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ABSTRACT

Mechanistic interpretability research aims to deconstruct the underlying algorithms that neural
networks use to perform computations, such that we can modify their components, causing them
to change behavior in predictable and positive ways. This thesis details three novel methods for
automating the interpretation process for neural networks that are too large to manually interpret.
Firstly, we detect inherently multidimensional representations of data; we discover that large
language models use circular representations to perform modular addition tasks. Secondly, we
introduce methods to penalize complexity in neural circuitry; we discover the automatic emergence
of interpretable properties such as sparsity, weight tying, and circuit duplication. Last but not
least, we apply neural network symmetries to put networks into a simplified normal form, for
conversion into human-readable python; we introduce a program synthesis benchmark with this and
successfully convert 32 out of 62 of them.
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Chapter 1

Introduction

Neural networks have recently become central to multiple safety-critical applications, despite

our lack of understanding of their learned internal functioning. With the recent breakneck pace

of machine learning research in generative pretrained models such as large language models

(LLMs), safety considerations have quickly become a critical priority. The capabilities of models

increase rapidly, and safety precautions struggle to keep pace. The worst possible outcome of this

development is the creation of unsafe artificial general intelligence (AGI) with the capacity to do

dangerous things, which may have a harmful impact on humanity. It follows that a major priority

in AI safety research is to find methods to guarantee or encourage specific desired neural network

behaviors and properties. With safer, more controlled methods of building intelligent models, we

may prevent potential damages to society as model capabilities progress.

Most current work surrounding safety in large language models and other state-of-the-art systems

aims to provide some heuristic form of encouragement or modification for models to abstain from

producing harmful outputs. Examples include adverserial robustness training (Drenkow et al. 2021),

fine-tuning, and RLHF (Christiano et al. 2017; Ziegler et al. 2019).

Amongst these top-down approaches to safety, which try to build safety properties into machine

learning systems, is a bottom-up approach dubbed “mechanistic interpretability”, where we try

to break machine learning systems down into safe components. In mechanistic interpretability,

19



we dissect neural networks to understand the learned internal structures, the same way that bi-

ologists dissect organisms to understand their evolved internal structures. And just as medical

practitioners use this knowledge to treat patients, mechanistic interpretability researchers aim to use

their knowledge to modify models to induce or prevent safety-relevant behaviors. More recently,

researchers inlcuding myself have become more interested in automated mechanistic interpretability,

whereby an algorithm is used to convert model weights into human-interpretable explanations. This

is especially popular with LLMs, which have far too many weights for humans to possibly dissect

and understand. (Sharkey, Braun, and Millidge 2022; Elhage et al. 2021)

1.1 Thesis Overview

The next three thesis chapters correspond to three research papers I have contributed to, each of

which explores one research direction relating to automatic mechanistic interpretability.

1. Circular Representations in Large Language Models: Neural networks trained to perform

modular addition have the curious tendency to create circular representations of numbers.

This recent discovery is easy to reproduce and study in small experiments, and the theory

surrounding these toy examples is rapidly advancing. But at the end of the day, this work

is hardly useful for understanding real LLMs unless we can find circular representations in

them, instead of in toy examples. So, the hunt has been on to discover the elusive circular

representations “in the wild”.

A few of us in the Tegmark group have finally found them. We have piled up some evidence

of their existence, and we did some experiments to understand what role they play. I have

included a self-contained copy of this work in Chapter 2. A rough outline of the work is as

follows:

• We mathematically define the internal operation of LLMs in terms of “features”, the

fundamental unit of data manipulated in attention layers and MLPs. We aim for

definitions and tests which will separate the behavior of conventionally understood

20



“one-dimensional representations” from “multidimensional representations” such as

the circular representations that pop up in toy examples. We perform experiments

to illustrate the properties of our definitions and how they classify toy datasets into

one-dimensional and multidimensional representations.

• We introduce a new method, as an alternative to sparse auto-encoders (SAEs), for auto-

extracting multidimensional features, like circular representations, from LLMs, on large

datasets like The Pile (Gao et al. 2020).

• We test out various prompts which ask various language models to perform naturally-

occurring modular addition tasks. The addition problems which the LLMs are most

successful at solving involve measures of time, such as days of the week, months of the

year, and minutes in an hour.

• We deconstruct the hidden states that show up in the middle layers of the LLMs, and

show using a new technique that circular representations of the summands and sum are

present in these hidden states. This technique casts a wide net that allows us to quickly

identify every human-interpretable every feature in the hidden state, allowing us to catch

the circlular representation in the mix.

• We show that circular representations can be probed out of the hidden states.

• We perform intervention and patching experiments which replace individual features

in the addition problem representations, to test if the LLMs react according to how we

expect. We also test what happens if we replace the circular feature by moving off the

circle onto any point in the 2D plane.

2. Hypernetworks for Generating Interpretable Neural Network Weights: This research

project is an exploration into the question of what it means for a neural network to be machine-

interpretable, rather than human-interpretable. We suppose that machines can interpret

weights by fitting a learnable generative probabilistic model, ie. a “hypernetwork”, to the

distribution of weights of well-performing networks. The learnable model represents the

21



machine’s understanding of the distribution of “well-trained weights”, thereby acting as the

machine’s interpretation. Ideally, the learned model becomes well-adapted to capture and

encode various possible human-discovered interpretations of network weights.

In this project, we demonstrate that the learned model has a tendency to capture several

human-interpretable properties, without explicit encouragement towards these properties.

For example, we sample networks from the learned probabilistic model that exhibit circuit

duplication, sparsity, and weight tying, even though we use no structural assumptions nor

L1/sparsity penalties in our model. We also show that the generated networks achieve a low

out-of-distribution loss.

A preprint of the paper from this project is available online in Liao, Liu, and Tegmark (2023),

and a fully self-contained copy is also included in Chapter 3.

3. Auto-Simplification of Neural Networks: This is the idea of automatically reducing a

network into a form that humans can more easily understand, without altering the reduced

network’s behavior, with the goal of making interpretation or safety verification easier. This

is an umbrella research direction, which encompasses many classes of methods, such as

formal verification for neural networks (Dalrymple et al. 2024; Carr, Jansen, and Topcu 2020;

Ayache, Eyraud, and Goudian 2019; Mayr, Visca, and Yovine 2020; Mayr and Yovine 2018;

Okudono et al. 2020; Omlin and Giles 1996; Weiss, Goldberg, and Yahav 2018), compilation

from neural network to and from other programming languages (Lindner et al. 2024; Weiss,

Goldberg, and Yahav 2021), and symmetry identification (Grigsby, Lindsey, and Rolnick

2023).

My work on auto-simplification was part of a larger project focused on program synthesis via

mechanistic interpretability, which involved many collaborators. A preprint of the paper from

this project is available online in Michaud et al. (2024), and a fully self-contained copy is

also included in Chapter 4. A rough outline of the project is as follows:

• We introduce a new benchmark for the conversion of neural network weights into short
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and interpretable python programs. This benchmark consists of training tasks which can

be used to train the network weights before one tries to convert them into programs.

• We train small recurrent neural networks (RNNs) on the tasks in the benchmark.

• We identify symmetry transformations of the neural network weights, and apply various

normalization algorithms to simplify the RNNs so that they would be easier to interpret.

• We attempt to find lattices in the hidden representations, and we apply symbolic, boolean,

and integer regression to decode these lattice representations into python programs.

• We compare our method of program synthesis to the use of a large language model to

write a program when prompted with raw data generated from benchmark tests.

1.2 My Contributions

All of the aforementioned research was done in collaboration with co-authors:

1. Circular Representations in Large Language Models: In this project, I discussed exten-

sively with coauthors on how we can make a bulletproof definition of a “feature” for our

work, which captures most currently well-accepted examples of features. I also performed

our experiments which demonstrate the properties of our feature definitions on toy examples.

I am responsible for coming up with our technique for quickly deconstructing hidden states

into human-interpretable features. I extensively tested the properties of interactions between

features in individual layers of the LLMs, guided by crucial patching experiments from my

collaborator Josh Engels and with support and ideas from Max Tegmark.

2. Hypernetworks for Generating Interpretable Neural Network Weights: This was a fairly

independent research project led by myself, with great input, discussion, and advice from my

collaborator Ziming Liu and my supervisor Max Tegmark.

3. Auto-Simplification of Neural Networks: My role in the project was to come up with, refine,

and operate the normalization algorithms. More specifically, I identified the symmetries
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which we could exploit, constructed and refined programs to pick and apply the symmetry

transformations, applied them to the trained networks, and measured interpretability-related

metrics such as weight sparsity and activation sparsity. I am responsible for coming up with

and implementing the algorithm for approximate Jordan Normal Form in Appendix 4.D.2. I

also came up with 14 out of the 62 benchmark tasks.
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Chapter 2

Not All Language Model Features Are

Linear

Joshua Engels*, Isaac Liao*, Eric Michaud, Wes Gurnee, and Max Tegmark

MIT

{jengels,iliao,ericjm}@mit.edu,wesgurnee@gmail.com,tegmark@mit.edu

ABSTRACT

Recent work has proposed the linear representation hypothesis: that language models

perform computation by manipulating one-dimensional representations of concepts

(“features”) in activation space. In contrast, we explore whether some language model

representations may be inherently multi-dimensional. We begin by developing a

rigorous definition for irreducible multi-dimensional features based on whether they

can be decomposed into either independent or non-co-occurring lower dimensional

features. Motivated by these definitions, we design a scalable method that uses sparse

autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral

7B. These auto-discovered features include many strikingly interpretable examples,

e.g. circular features representing days of the week and months of the year. We

*Equal contribution.
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identify tasks where these circles are used to solve computational problems involving

modular arithmetic in days of the week and months of the year. Finally, we provide

evidence that these circular features are indeed the fundamental unit of computation in

these tasks with intervention experiments on Mistral 7B and Llama3 8B, and we find

further circular representations by breaking down the residual stream for these tasks

into interpretable components.

2.1 Introduction

Language models trained for next-token prediction on large text corpora have demonstrated re-

markable capabilities, including coding, reasoning, and in-context learning (Bubeck et al. 2023;

Achiam et al. 2023; Anthropic 2024; Team et al. 2023). However, the specific algorithms learned

to achieve these capabilities remain largely a mystery to researchers; we do not understand how

language models write poetry. Mechanistic interpretability is a field that seeks to address this gap in

understanding by reverse-engineering trained models from the ground up into variables (features)

and the programs (circuits) that process these variables (Olah et al. 2020).

One mechanistic interpretability research direction has focused on understanding toy models in

detail. This work has found multi-dimensional representations of inputs such as lattices (Michaud

et al. 2024) and circles (Z. Liu et al. 2022), and has successfully reverse-engineered the algorithms

that models use to manipulate these representations. A separate direction has identified one-

dimensional representations of high level concepts and quantities in large language models (Gurnee

and Tegmark 2023; Marks and Tegmark 2023; Heinzerling and Inui 2024). These findings have

led to the linear representation hypothesis: that all representations in pretrained langauge models

are one-dimensional lines, and that we can understand model behavior as nonlinear manipulations

of these linear representations (Park, Choe, and Veitch 2023; Bricken et al. 2023). In this work,

we bridge the gap between these to regimes by providing evidence that also language models use

multi-dimensional representations.
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2.1.1 Contributions

1. In Section 2.3, we generalize the one-dimensional definition of a language model feature

to multi-dimensional features, provide an updated superposition hypothesis to account for

these new features, and analyze the reduction in a model’s representation space implied by

using multi-dimensional features. We also develop a theoretically grounded and empirically

practical test for irreducible features, and run this test on some sample distributions.

2. In Section 2.4, we present a theoretically motivated and scalable method for finding multi-

dimensional features using sparse autoencoders. Using this method, we auto-identify many

multi-dimensional representations automatically in GPT-2 and Mistral 7B, including circular

representations for the day of the week and month of the year. To the best of our knowledge,

we are the first to find an emergent circular representation of a quantity in a large language

model.

3. In Section 2.5, we propose two tasks, modular addition in days of the week and in months

of the year, that we hypothesize will cause models to use these circular representations. We

intervene on the circular representations in Mistral 7B and Llama 3 8B to show that the

models do indeed use these circular representations for these tasks. Finally, we present novel

methods for decomposing LLM hidden states, which we use to reveal circles in the computed

day of the week and month of the year.

2.2 Related Work

Linear Representations: Early word embedding methods such as GloVe and Word2vec, although

only trained using co-occurrence data, were found to contain directions in their vector spaces

corresponding to semantic concepts, e.g. the well-known formula f(king) - f(man) + f(woman) =

f(queen) (Tomáš Mikolov, Yih, and Zweig 2013; Pennington, Socher, and Manning 2014; Tomas

Mikolov et al. 2013). More recent research has found similar evidence of linear representations in
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sequence models trained only on next token prediction, including Othello board positions (Nanda,

A. Lee, and Wattenberg 2023; K. Li et al. 2022), the truth value of assertions (Marks and Tegmark

2023), and numeric quantities such as longitude, latitude, birth year, and death year (Gurnee and

Tegmark 2023; Heinzerling and Inui 2024). These results have inspired the linear representation

hypothesis (Park, Choe, and Veitch 2023; Elhage et al. 2022) defined above. Recent theoretical

work provides evidence for this hypothesis, assuming a latent (binary) variable- based model of

language (Y. Jiang et al. 2024). Empirically, dictionary learning has shown success in breaking

down a model’s feature space into a sparse over-complete basis of linear features using sparse

autoencoders (Bricken et al. 2023; Cunningham et al. 2023). These works assume that the number

of linear features stored in superposition exceeds the model dimensionality (Elhage et al. 2022).

Nonlinear Representations: There has been comparatively little research on nonlinear features.

One recent paper (Kim and Suzuki 2024) proves that a one-layer swapped order (MLP followed

by attention) transformer can in-context-learn a nonlinear mapping function followed by a linear

regression, implying that the “features” between the MLP and attention blocks are nonlinear.

Another work (Shai et al. 2024) finds that a transformer trained on a hidden Markov model uses a

fractal structure to represent the probability of each next token. These works analyze toy models,

and so it is not clear if large language models will have similar nonlinear features. A separate

idea (Black et al. 2022) argues for interpreting neural networks through the polytopes they split the

input space into, and identifies regions of low polytope density as “valid” regions for a potential

linear representation. Finally, recent work on dictionary learning (Bricken et al. 2023) has speculated

about multi-dimensional feature manifolds; our work is most similar to this direction, and can be

viewed as developing the idea of feature manifolds theoretically and empirically.

Circuits: Circuits research seeks to identify and understand a subset of a model (usually

represented as a directed acyclic graph) that explains a specific behavior (Olah et al. 2020). The

base units that form the circuits can be layers, neurons (Olah et al. 2020), or sparse autoencoder

features (Marks, Rager, et al. 2024). The first circuits-style work looked at the InceptionV1 image

model and found line features that were combined into curve detection features (Olah et al. 2020).
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More recent work has examined language models, for example the indirect object identification

circuit in GPT-2 (Wang et al. 2022). Given the difficulty of designing bespoke experiments, there

has been increased research in automated circuit discovery methods (Marks, Rager, et al. 2024;

Conmy et al. 2023; Syed, Rager, and Conmy 2023).

Interpretability for Arithmetic Problems: Prior work studies models trained on modular

arithmetic problems of the form a+ b = c (modm) and finds that models that generalize well have

multi-dimensional circular representations for a and b (Z. Liu et al. 2022). Further work shows that

models use these circular representations to compute c via a “clock” algorithm (Nanda, Chan, et al.

2023) and a separate “pizza” algorithm (Zhong et al. 2024). These papers are limited to the case of a

small model trained only on modular arithmetic. Another direction has studied how large language

models perform basic arithmetic, including a circuits level description of the greater-than operation

in GPT-2 (Hanna, O. Liu, and Variengien 2024) and addition in GPT-J (Stolfo, Belinkov, and

Sachan 2023). These works find that to perform a computation, models copy pertinent information

to the token before the computed result and perform the computation in the subsequent MLP layers.

Finally, recent work (Gould et al. 2023) investigates language models’ ability to increment numbers

and finds linear features that fire on tokens equivalent modulo 10.

2.3 Definitions and Theory

In this section, we focus on transformer models M with L layers that take in token input t =

(t1, . . . , tn), have intermediate hidden states x1,l, . . . ,xn,l for all hidden layers l, and output logit

vectors y1, . . . ,yn. Given an input set of tokens T , we denote Xi,l as the set of all corresponding

xi,l. This section focuses on hypotheses that describe how hidden states xi,l can be decomposed

into sums of functions of the input (features). Note that while this is always possible when M is

deterministic via the “trivial” evaluation of M itself, we are particularly interested in decomposable,

interpretable hypotheses for the construction of xi,l.

We summarize all notation in our paper in Table 2.2 in Section 2.A. In general, matrices are
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written in capital bold, vectors and vector valud functions are written in lowercase bold, distributions

in capital caligraphy, and sets in capital non-bold.

2.3.1 Multi-Dimensional Features

Definition 2.3.1 (Feature). We define a df -dimensional feature of sparsity s as a function f that

maps a subset of the input space of probability 1− s > 0 into a df -dimensional point cloud in Rdf .

We say that a feature is active on the aforementioned subset.

As an example, let the context length be n = 1 (so that inputs are single tokens) and consider a

feature f defined on the set of tokens representing integers. If f maps integer tokens to equispaced

points in R1, then f is a 1-dimensional feature that is active on integer tokens. If integer tokens

occur 1% of the time across the input distribution, f has sparsity s = 0.99.

For features to be meaningful, we want them to be irreducible. In this work, we focus on a form

of statistical irreducibly: f is reducible if we can find two lower-dimensional features that “combine”

to create f .

We consider two ways of combining lower dimensional features: composing two statistically

independent co-occurring features (in which case f is “separable”) or composing two non-co-

occurring features (in which case f is a “mixture”).

The probability distribution over input tokens t induces a df -dimensional probability distribution

over feature vectors f(t) — Figure 1 shows two examples. Note that f(t) is a random vector since t

is a random variable; we use p(f) to denote the probability density function of f(t), suppressing the

argument t for brevity.

Definition 2.3.2. A feature f is reducible into features a and b if there exists an affine transformation

f 7→ Rf + c ≡

a

b

 (2.1)

for some orthonormal df × df matrix R and additive constant c, such that the transformed feature
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probability distribution p(a,b) satisfies at least one of these conditions:

1. p is separable, i.e., factorizable as a product of its marginal distributions:

p(a,b) = p(a)p(b).

2. p is a mixture p(a,b) = wp1(a,b) + (1− w)p2(a,b) of disjoint probability distributions for

w > 0, and p1 is lower-dimensional such that p1(a,b) = p1(a)δ(b).

Here δ is the Dirac delta function. By two probability distributions being disjoint, we mean that

they have disjoint support (there is no set where they both have positive probability measure, so the

two features a and b cannot be active at the same time). In Eq. (2.1), a is simply defined as the first

k components of the vector Rf + c and b contains the remaining components. When p is separable

or a mixture, we also say that f is separable or a mixture. We term a feature irreducible if it is not

reducible, i.e., if no rotation and translation can make it separable or a mixture in the manner above.

Fig. 2.1a shows an example of a 2D feature that is a mixture, because it can be decomposed

into features a and b where b is a 1D line distribution (marked in red) and a is the remainder (a

2D cloud and a line, which can in turn be decomposed). Another example of a feature that is a

mixture is a one hot encoding along a simplex; an example of a feature that is separable is a normal

distribution (since any multidimensional Gaussian can be rotated to have a diagonal covariance

matrix). In natural language, a mixture might be a one hot encoding of “language of the current

token”, while a separable distribution might be the “latitude” and “longitude” of location tokens.

In practice, because of noise and finite sample size, an empirically observed feature may only be

mostly a mixture or may not be exactly separable. Thus, we soften our definitions to permit degrees

of reducibility:

Definition 2.3.3 (Separability Index and ϵ-Mixture Index). Consider a feature f . The separability

index S(f) measures the minimal mutual information between all possible a and b defined in

Eq. (2.1):

S(f) ≡min I(a;b)
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(a) Testing Mϵ(f) on a 3 feature dataset
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(b) Testing Mϵ(f) on an irreducible feature

Figure 2.1: Examples of testing reducibility of different features. Left in each subfigure: His-
tograms of the distribution of v · x with red lines indicating a 2ϵ-wide region. Right in each
subfigure: Distributions of x. For the first feature (a), 34.37% lies within the dotted lines, indicating
that f is a mixture. For the second feature (b), 17.84% lies within, indicating that f is not a mixture.

where I denotes the mutual information. Smaller values of S(f) mean that f is more separable and

therefore more reducible. Note that we only need to minimize over how many of the df components

to split off as a and over invertible matrices R, since the additive offset c does not affect the mutual

information.

The ϵ-mixture index Mϵ(f) tests how often f can be projected near zero while it is active:

Mϵ(f) = max
v∈Rdf , c∈R

P
(
|v · f + c| < ϵ

√
E[(v · f + c)2]

)

Larger values of Mϵ(f) mean that f is more of a mixture and is therefore more reducible.

2.3.2 Superposition

Now that we have a definition for a multi-dimensional feature, we will examine the implications for

the superposition hypothesis (Elhage et al. 2022).

Definition 2.3.4 (δ-orthogonal matrices). Two matrices A1 ∈ Rd×d1 and A2 ∈ Rd×d2 are δ-

orthogonal if |x1 · x2| ≤ δ for all unit vectors x1 ∈ colspace(A1) and x2 ∈ colspace(A2).

Hypothesis 1 (One-Dimensional Superposition Hypothesis, paraphrased from (Elhage et al. 2022)).

Hidden states xi,l are the sum of many (≫ d) sparse one-dimensional features fi and pairwise
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δ-orthogonal vectors vi such that xi,l(t) =
∑

i fi(t)vi. We assign the value of fi(t) to zero when t

is outside the domain of fi.

We now present our superposition hypothesis, which instead of positing unknown levels of

independence between features, explicitly decomposes the spaces using mixtures and separability

until only irreducible features remain:

Hypothesis 2 (Our Superposition Hypothesis, changes underlined). Hidden states xi,l are the sum

of many (≫ d) sparse low-dimensional irreducible features fi and pairwise δ-orthogonal matrices

Vi ∈ Rd×dfi such that xi,l(t) =
∑

i Vifi(t). We assign the value of fi(t) to zero when t is outside

the domain of fi. Any subset of features must be mutually independent on their shared domain.

The Johnson-Lindenstrauss (JL) Lemma (Johnson and Lindenstrauss 1984) implies that we can

choose eΘ(dδ2) pairwise one-dimensional δ-orthogonal vectors to satisfy Hypothesis 1, thus allowing

us to build the model’s feature space with a number of one-dimensional δ-orthogonal features

exponential in d. In Appendix 2.A, we prove a similar result for low-dimensional projections:

Theorem 1. For any δ, it is possible to choose eΘ((d/d2max)δ
2) pairwise δ-orthogonal projection

matrices Ai ∈ Rni×d where 1 ≤ ni ≤ dmax.

This exponential reduction in the number of features that are representable δ-orthogonally (as

opposed to merely a multiplicative factor reduction) suggests that models will employ higher-

dimensional features only for representations that necessitate multi-dimensional, detailed descrip-

tions. Moreover, these representations will likely be highly compressed to fit within the smallest

dimensional space possible, potentially leading to interesting encoding strategies; for example,

recent work (Morwani et al. 2023) finds that maximum-margin solutions for problems like modular

arithmetic consist of Fourier features.

Note that the proof assumes the “worst case” scenario that all of the features are dimension dmax,

while in practice many of the features may be 1 or low dimensional, so the effect on the capacity of

a real model that represents multi-dimensional features is unlikely to be this extreme.
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(a) Days of Week (b) Months of Year (c) 19th and 20th Century

Figure 2.2: Reconstructions from the sparse autoencoder search technique.

2.4 Sparse Autoencoders Find Multi-Dimensional Features

Sparse autoencoders (SAEs) are a recent technique to deconstruct a model’s hidden states using

sparse sums of vectors from an over-complete basis (Bricken et al. 2023; Cunningham et al. 2023).

Given a set of hidden states Xi,l, a one-layer sparse autoencoder of size m and sparsity penalty λ

seeks to minimize the following dictionary learning loss (Bricken et al. 2023; Cunningham et al.

2023):

DL(Xi,l) = argmin
E∈Rm×d,D∈Rd×m

∑
xi,l∈Xi,l

[
∥xi,l −D · ReLU(E · xi,l)∥22 + λ∥ReLU(E · xi,l)∥0

]

In practice, the L0 loss on the last term is relaxed to L1 to make the loss differentiable. We call

the m columns of D (vectors in Rd) dictionary elements.

We now claim that SAEs can help discover irreducible multi-dimensional features by identifying

point sets that are not mixtures (i.e. have a low ϵ-mixture index). For example, assume that Xi,l

contains an irreducible two dimensional feature f in its sparse sum (see Hypothesis 2). Because f is

not a mixture, if D contains just two dictionary elements that span the space of f , then both of them

must always have a nonzero weight after the ReLU to perfectly reconstruct f . Thus the Jaccard

similarity of the sets of tokens that these two dictionary elements fire on is likely to be high. On the
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Model Weekdays Months

Llama 3 8B 25 / 49 143 / 144

Mistral 7B 31 / 49 125 / 144

GPT-2 0 / 49 0 / 144

Table 2.1: Aggregate model top-1 accuracy
on days of the week and months of the
year modular arithmetic tasks. GPT-2 is
worse than random because it predicts non
weekday/month tokens like “a” or “the”.
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Mistral Weekdays
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Figure 2.3: Projections onto top 2 PCA direc-
tions on modular arithmetic tasks on the starting
day/month token. Colors are in order of days of
week/months of year.

other hand, if D contains (many) more than two dictionary elements that span the space of f , then

the Jaccard similarity of the sets of tokens each dictionary element fires on may be lower. However,

since there are now many dictionary elements with a high projection in the two dimensional feature

space, the cosine similarity of the dictionary elements is likely to be high.

Thus for a two dimensional irreducible feature f , we expect there to be groups of dictionary

elements with either high cosine or Jaccard similarity corresponding to f . We expect this observation

to be true for higher dimensional irreducible features as well. Note that there also may be clusters that

correspond to separable features f , as this technique only finds features that are not mixtures. This

suggests a natural approach to using sparse autoencoders to search for irreducible multi-dimensional

features:

1. Cluster dictionary elements by their pairwise cosine similarity or Jaccard similarity. We find

empirically that spectral clustering on cosine similarity works best.

2. For each cluster, run the SAEs on all xi,l ∈ Xi,l and ablate all dictionary elements not in the

cluster. This will give the reconstruction of each xi,l restricted to the cluster found in step 1 (if no

cluster dictionary elements are non-zero for a given point, we ignore the point).

3. Examine the resulting reconstructed activation vectors for irreducible multi-dimensional

features, especially ensuring that the reconstruction is not separable. This step can be done manually

be visually inspecting the PCA projections for known irreducible multi-dimensional structures (e.g.

circles) or automatically by passing the PCA projections to the tests for Definition 2.3.3.
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We apply this method to real language models using GPT-2 (Radford et al. 2019) residual stream

SAEs trained by Bloom for every residual layer (Bloom 2024) and Mistral 7B (A. Q. Jiang et al.

2023) SAEs that we train on residual layers 16 and 24.

Strikingly, we find clusters of SAE features whose reconstructions form circles. Moreover, these

circles are interpretable: in GPT-2, we find reconstructions where days of the week (Fig. 2.2a),

months of the year (Fig. 2.2b), and years in the 19th and 20th century (Fig. 2.2c) are arranged

circularly in order.

2.5 Circular Representations in Large Language Models

In this section, we aim to find tasks in which models use the multi-dimensional features we

discovered in the last section, thereby providing evidence that these representations are indeed the

fundamental unit of computation for some problems. For simplicity, we design tasks where the

answer is a single token. Inspired by the circular representations we found in Section 2.4 and prior

work studying circular representations in modular arithmetic (Z. Liu et al. 2022), we define two

tasks that represent “natural” modular arithmetic with the following prompts:

Weekdays task: “Let’s do some day of the week math. Two days from Monday is”

Months task: “Let’s do some calendar math. Four months from January is”

For Weekdays, we range over the 7 days of the week and durations between 1 and 7 days to

get 49 prompts. For Months, we range over the 12 months of the year and durations between 1

and 12 months to get 144 prompts. Mistral 7B and Llama 3 8B (AI@Meta 2024) both achieve

reasonable performance on the Weekdays task and excellent performance on the Months task

(measured by comparing the highest logit token against the ground truth answer), as summarized in

Table 2.1. Interestingly, although these problems are equivalent to modular arithmetic problems

a + b ≡ ? (mod m) for m = 7, 12, we were not able to get more than trivial accuracy when

using plain modular addition prompts, e.g. “5 + 3 (mod 7) ≡”. Finally, even though we found
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Figure 2.4: Visual representation of the intervention process and intervention results.

circular representations for GPT-2, it failed on every problem instance for both the Weekdays and

Months tasks.

2.5.1 Intervening on Circular Day and Month Representations

To simplify discussion, let α be the day of the week or month of the year token (e.g. “Monday” or

“April”), β be the duration token (e.g. “four” or “eleven”), and γ be the target ground truth token

the model should predict, such that (abusing notation) we have α + β = γ. Let the prompts of the

task be parameterized by j, such that the jth prompt asks about αj , βj , and γj . We first confirm

that Llama 3 8B and Mistral 7B have circular representations of α by examining the PCA of the

hidden state at various layers on the α token. We plot two of these in Fig. 2.3 and show all of

them in Section 2.B. These plots clearly show circular representations as the highest varying two

components in the model’s representation of α at many layers, even in the embedding layer.

We now experiment with intervening on these circular representations. We base our experiments

on the common interpretability technique of activation patching, which replaces activations from a

“dirty” run of the model with the corresponding activations from a “clean” run (Zhang and Nanda
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2023). Activation patching empirically tests whether a specific model component, position, and/or

representation has a causal influence on the model’s output. We employ a custom subspace patching

method to allow testing for whether a specific circular subspace of a hidden state is sufficient to

causally explain model output. Specifically, our patching technique relies on the following steps

(visualized in Fig. 2.4a):

1. Find a subspace with a circle to intervene on: Using a PCA reduced activation subspace

to avoid overfitting, we train a “circular probe” to identify representations which exhibit strong

circular patterns. More formally, let xj
i,l be the hidden state at layer l token position i for prompt

j. Let Wi,l ∈ Rk×d be the matrix consisting of the top k principal component directions of

xj
i,l. In our experiments, we set k = 5. We learn a linear probe P ∈ R2,k from Wi,l · Xi,l to a

unit circle in α. In other words, if circle(α) = [cos(2πα/7), sin(2πα/7)] for Weekdays and

circle(α) = [cos(2πα/12), sin(2πα/12)] for Months, P is defined as follows:

P = argmin
P′∈R2,k

∑
xj
i,l

[
P′ ·Wi,l · xj

i,l − circle(α)
]2

2. Intervene on the subspace: Say our initial prompt had α = αj and we are intervening with

α = αj′ . In this step, we replace the model’s projection on the subspace PWi,l, which will be close

to circle(αj), with the “clean” point circle(αj′). Note that this step does not actually use any

of the hidden states xj′

i,l from the corresponding “clean” run, only the “clean” label αj′ . In practice,

other subspaces of xj
i,l may be used by the model in alternate pathways to compute the answer. To

avoid this affecting the intervention, we average out all subspaces not in the intervened subspace.

Letting xi,l be the average of xj
i,l across all prompts indexed by j, we intervene via the formula

xj∗

i,l = xi,l +Wi,l
TP+(circle(αj′)− xi,l)

where P+ is the pseudoinverse of P.

We run our patching on α circles for all 49 Weekday problems and 144 Month problems and

use as “clean” runs the 6 or 11 other possible values for β, resulting in a total of 49 ∗ 6 patching
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point.
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experiments for Weekdays and 144 ∗ 11 patching experiments for Months. As baselines, we also

run intervention experiments where we (1) replace the entire subspace corresponding to the first 5

PCA dimensions with the corresponding subspace from the clean run, (2) replace the entire layer

with the corresponding layer from the clean run, (3) replace the entire layer with the average across

the task, (4) zero ablate the circle subspace, and (5) zero ablate everything but the circle subspace.

The metric we use is average logit difference across all patching experiments between the original

correct token and the target token. See Fig. 2.4b for the average logit difference across all layers

with Mistral 7B on the Weekdays task.

The main takeaway from Fig. 2.4b is that intervening on the circular subspace works! For

Mistral 7B, intervening at early layers on the circular subspace is almost as good as patching

the entire layer, and is sometimes even better than patching the top 5 PCA dimensions from the

corresponding problem. Note that patching experiments in Section 2.B (Fig. 2.10) show that the

value of α is copied to the penultimate token on layers 15 to 17, which is why the intervention

effect of all methods decreases at around these layers. Moreover, zero ablating the circle plane

hurts intervention performance far more than zero ablating everything but the circle plane, further

evidence that the main pathway the model uses to compute γ relies on the circular representation of

α.

As a final experiment to investigate how the model is using the subspace, we perform an off

distribution intervention experiment, where instead of intervening on one of the 7 or 12 points on

the circumference of the circle that the probe learned, we intervene on a grid of points in the circle.

We plot the results of this experiment on layer 5 in Mistral 7B with β ∈ [2, 3, 45] in Fig. 2.5. We

believe due to these results that the model indeed treats the circle as though it is multi-dimensional

representation with α encoded in the angle.

2.5.2 Decomposing Hidden States

To isolate the rough circuit for Weekdays and Months, we perform activation patching on 20

random problems with the same α and differing β and on 20 random problems with the same β
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and differing α. The results, displayed in Section 2.B (Fig. 2.10), show that the circuit to compute

γ consists of processing on top of the α and β tokens, followed by a copy to the token before γ,

and finally further processing there (this circuit’s structure is roughly similar to prior work studying

arithmetic circuits (Stolfo, Belinkov, and Sachan 2023)). Moreover, the attention writes from the α

and β token are restricted to a few attention layers.

We now introduce a new technique for empirically explaining hidden representations in algorith-

mic problems: explanation via regression. Given an input distribution T which goes through a

model f : t 7→ x to produce a distribution of activations X , we try to explain away all the variance

in x by adding together hand-computed functions of t, thereby producing an explanation of what

f computes. When we know what hand-computed functions fi(t) to use, the r2 value of a linear

regression from f1(t), f2(t), . . . fk(t) to x tells us how much of the variance in x has been explained.

But what functions fi should we choose?

We believe it is best to build a list of fi iteratively and greedily. That is, at each iteration, we

perform a linear regression with the current list f1 . . . fk, try to visualize and interpret the residual

prediction errors, and build a new function fk+1 representing these errors, to add to the list. Since

T consists of modular addition problems with two inputs α and β, we can visualize the errors by

making a heatmap with α and β on the two axes, where the color shows what kind of error is made.

More specifically, we take the top 3 PCA components of the error distribution and assign them to

the colors red, green, and blue. We call the resulting heatmap a residual RGB plot. Errors that

depend primarily on α, β, or γ show up as horizontal, vertical, or diagonal stripes on the residual

RGB plot, and signal that functions of α, β, or γ should be added to the list of fi.

Once most of the variance has been explained, we can reasonably conclude that whatever

f1, . . . , fk we have constitutes the entirety of what is represented in the hidden state x, allowing

us to even make claims about what is not linearly extractable from x. Furthermore, the linear

regression coefficients can tell us which directions in X each of these functions are represented in,

if each function were a feature, connecting this technique to Definition 2.3.1 and Hypothesis 2.

Using explanation via regression, we can explain the second to last token’s hidden states almost
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Figure 2.6: Residual RGB plots from explanation via regression, on Mistral hidden states of the
token that predicts γ in the Weekdays task, from layers 17 to 29. From top to bottom, we show
each residual RGB plot after adding the function(s) fi labelled just underneath, as well as the
resulting r2 value. We write a, b, c for α, β, γ, and “tmr” meaning “tomorrow” for β = 1. We also
write “circle for x” meaning the inclusion of two functions fi(x) = {cos, sin}(2πx/7).

entirely with one hot encodings of α and β (see Section 2.B for these plots). This means that the

computation of γ is happening in the MLPs on the last token.

With explanation via regression, we can also remove all linear influence from α and β on

the last token’s hidden state, to examine what remains. Incredibly, the leftover errors from the

regression form a clear circle, which encodes the value of γ. This suggests that the models could be

generating γ by using a trigonometry based algorithm like the “clock” (Nanda, Chan, et al. 2023) or

“pizza” (Zhong et al. 2024) algorithm.

In Fig. 2.6, we perform explanation via regression on the hidden states between layers 17-29 of

Mistral 7B on the Weekdays task.
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2.6 Broader Impact and Limitations

As machine learning models become more capable, it is increasingly important to understand how

they work to ensure they behave safely and reliably. This paper works towards this long term goal

by enhancing our understanding of current models. We believe that the insights gained from our

investigation into feature structures will facilitate better control, intervention, and ultimately the

simplification of complex circuits into formally verifiable programs in future models. We do not

anticipate adverse effects from our research, as it focuses solely on deepening our understanding of

how language models internally represent concepts.

The main limitation of our work is that we were not able to find a specific small subset of

MLP neurons that implement the “clock” algorithm by rotating the circles in α. In preliminary

experiments exploring this direction, we found many neurons with large impact on the subspaces

which we determined γ was encoded in, so we suspect that if the models use the “clock” algorithm, it

is split across multiple MLP neurons. Nevertheless, we believe that the presence of circles encoding

α in the first few PCA dimensions is strong evidence that models use these circular representations

for many computational tasks.
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Symbol Description
M Denotes a specific autoregressive language model.
n Model context length.
d Model hidden dimension. Known in the literature as model_dim.

t = (t1, . . . , tn) A specific sequence of token inputs to the model.
T The distribution of t.
xi,l The residual stream state at token index i and layer l. xi,l ∈ Rd

Xi,l Distribution of vectors in feature space induced by input distribu-
tion T .

f A feature, i.e. a function from a subset of supp(T ) to Rd′ .
df Used to denote the dimension of a feature f . df ≪ d.
s Sparsity of a feature f . One minus the total probability that T

assigns to domain(f).
ϵ Small threshold value used in definition of empricial reducibility.
δ Measure of orthogonality in superposition hypothesis.

DL(Xi,l) Dictionary learning loss function on residual stream distribution
Xi,l.

m Dimension of a sparse autoencoder.
E, D Encoder and decoders for a sparse autoencoder. E ∈ Rm×d, D ∈

Rd×m.
α, β, γ Tokens / quantities for modular addition prompts. α + β =

γ (mod 7) for the Weekdays task and α+ β = γ (mod 12) for
the Months task.

Wi,l The PCA projection matrix for Xi,l.
P Learned projection for intervention experiments on a circle.

Table 2.2: Notation table, in order encountered in the paper. Matrices are written in capital bold,
distributions in caligraphy, and vectors and scalars in lowercase.

2.A Proofs

We will first prove a lemma that will help us prove Theorem 1.

Lemma 2.A.1. Pick n pairwise δ-orthogonal unit vectors in v1, . . . ,vn ∈ Rd. Let y ∈ Rd be

a unit norm vector that is a linear combination of unit norm vectors v1, . . . ,vn with coefficients

z1 . . . , zn ∈ R. We can write A = [v1, . . . ,vn] and y = [z1, . . . , zn]
T , so that we have y =
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∑n
k=1 zkvk = Ay with ∥y∥2 = 1. Then,

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ = ∥y∥1 ≤
√

n

1− δn

Proof. We will first bound the L2 norm of y. If σn is the minimum singular value of A, then we

have via standard singular value inequalities (Higham 2021)

σn ≤ ∥y∥2
∥y∥2

=⇒ ∥y∥2 ≤
∥y∥2
σn

=
1

σn

Thus we now lower bound σn. The singular values are the square roots of the eigenvalues of

the matrix ATA, so we now examine ATA. Since all elements of A are unit vectors, the diagonal

of ATA is all ones. The off diagonal elements are dot products of pairs of δ-orthogonal vectors,

and so are within the range [−δ, δ]. Then by the Gershgorin circle theorem (Gershgorin 1931), all

eigenvalues λi of ATA are in the range

(1− δ(n− 1), 1 + δ(n− 1))

In particular, σ2
n = λn ≥ 1 − δ(n − 1), and thus σn ≥

√
1− δ(n− 1). Plugging into our upper

bound for ∥y∥2, we have that ∥y∥2 ≤ 1/
√

1− δ(n− 1). Finally, the largest L1 for a point on an

n-hypersphere of radius r is when all dimensions are equal and such a point has magnitude
√
nr, so

∥y∥1 ≤
√

n

1− δ(n− 1)
≤
√

n

1− δn

Theorem 1. For any δ, it is possible to choose eΘ((d/d2max)δ
2) pairwise δ-orthogonal projection

matrices Ai ∈ Rni×d where 1 ≤ ni ≤ dmax.

Proof. By the JL lemma (Johnson and Lindenstrauss 1984; (https://mathoverflow.net/users/2554/bill-

johnson) n.d.), we can choose eΘ(dδ2) δ-orthogonal unit vectors in Rd indexed as vi. Let Ai =
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[vdmax∗i, . . . ,vdmax∗i+ni−1] where each element in the brackets is a column. Then by construction

all Ai are matrices composed of unique δ-orthogonal vectors and there are 1
dmax

eΘ(dδ2) = eΘ(dδ2)

matrices Ai.

Now, consider two of these matrices Ai = [v1, . . . ,vni
] and Aj = [u1, . . . ,unj

], i ̸= j; we will

prove that they are f(δ)-orthogonal for some function f . Let yi =
∑ni

k=1 zi,kvk be a vector in the

colspace of Ai and yj =
∑nj

k=1 zj,kuk be a vector in the colspace of Aj , such that yi and yj are unit

vectors. To prove f(δ)-orthogonality, we must bound the absolute dot product between yi and yj:

|⟨yi,yj⟩| =
∣∣∣∣∣
〈

ni∑
k=1

zi,kvk,

nj∑
k=1

zj,kuk

〉∣∣∣∣∣
=

∣∣∣∣∣
ni∑

k1=1

nj∑
k2=1

⟨zi,k1vk1 , zj,k2uk2⟩
∣∣∣∣∣

≤
ni∑

k1=1

nj∑
k2=1

|zi,k1zj,k2| |⟨vk1 ,uk2⟩| Triangle Inequality

≤
ni∑

k1=1

nj∑
k2=1

|zi,k1zj,k2|δ All vi, uj are δ orthogonal

= δ

ni∑
k1=1

nj∑
k2=1

|zi,k1zj,k2|

= δ

∣∣∣∣∣
ni∑
k=1

zi,k

∣∣∣∣∣
∣∣∣∣∣

nj∑
k=1

zj,k

∣∣∣∣∣ Factoring the product

≤ δ

√
ni

1− δni

√
nj

1− δnj

By Lemma 2.A.1

≤ δdmax

1− δdmax

ni, nj ≤ dmax by assumption

Thus Ai and Aj are f(δ)-orthogonal for f(δ) = δdmax/(1 − δdmax), and so it is possible to

choose eΘ(dδ2) pairwise f(δ)-orthogonal projection matrices. Remapping the variable δ with

δ 7→ f−1(δ) = δ/(dmax(1 + δ)), we find that it is possible to choose eΘ(dδ2/((1+δ)2d2max)) pairwise

δ-orthogonal projection matrices. Because δ2

(1+δ)2
is within a factor of 4 to δ2 on the valid interval of

δ ∈ (0, 1), we can further simplify the exponent and find that it is possible to choose eΘ((d/d2max)δ
2))

pairwise δ-orthogonal projection matrices.
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Figure 2.7: An example of testing ϵ-irreducibility on an irreducible feature. Left: histogram of the
distribution of v · f . Red lines indicate a 2ϵ-wide region in which we maximize the probability mass.
Right: The distribution of f . 7.94% of the feature distribution lies within the dotted lines, which is
roughly on the order of ϵ = 0.1, indicating that this supposed “feature” is unlikely to be a mixture.

2.B More Plots
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Figure 2.8: An example of testing ϵ-irreducibility on a grid dataset. Left: histogram of the
distribution of v · f . Red lines indicate a 2ϵ-wide region in which we maximize the probability mass.
Right: The distribution of f . 25.90% of the feature distribution lies within the dotted lines, much
higher than zero, indicating that this supposed “feature” is actually a mixture.
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Figure 2.9: The top two PCA dimensions of model hidden states on the α token show that circlular
representations of α are present in various layers.
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Figure 2.10: Attention and MLP patching results. Results are averaged over 20 different runs with
fixed α and varying β and 20 different runs with fixed β and varying α.
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Figure 2.11: Residual RGB plots from explanation via regression, on Mistral hidden states of the
token where α is input in the Weekdays task, from layers 17 to 29. From top to bottom, we
show each residual RGB plot after adding the function(s) fi labelled just underneath, as well as the
resulting r2 value. We write a, b, c for α, β, γ.
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Figure 2.12: Residual RGB plots from explanation via regression, on LLAMA 3 hidden states of the
token that predicts γ in the Months task, from layers 13 to 29. From top to bottom, we show each
residual RGB plot after adding the function(s) fi labelled just underneath, as well as the resulting
r2 value. We write a, b, c for α, β, γ. We also write “circle for x” meaning the inclusion of two
functions fi(x) = {cos, sin}(2πx/7).
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ABSTRACT

An essential goal in mechanistic interpretability to decode a network, i.e., to convert a

neural network’s raw weights to an interpretable algorithm. Given the difficulty of the

decoding problem, progress has been made to understand the easier encoding problem,

i.e., to convert an interpretable algorithm into network weights. Previous works focus

on encoding existing algorithms into networks, which are interpretable by definition.

However, focusing on encoding limits the possibility of discovering new algorithms that

humans have never stumbled upon, but that are nevertheless interpretable. In this work,

we explore the possibility of using hypernetworks to generate interpretable networks

whose underlying algorithms are not yet known. The hypernetwork is carefully designed

such that it can control network complexity, leading to a diverse family of interpretable

algorithms ranked by their complexity. All of them are interpretable in hindsight,
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although some of them are less intuitive to humans, hence providing new insights

regarding how to “think” like a neural network. For the task of computing L1 norms,

hypernetworks find three algorithms: (a) the double-sided algorithm, (b) the convexity

algorithm, (c) the pudding algorithm, although only the first algorithm was expected by

the authors before experiments. We automatically classify these algorithms and analyze

how these algorithmic phases develop during training, as well as how they are affected

by complexity control. Furthermore, we show that a trained hypernetwork can correctly

construct models for input dimensions not seen in training, demonstrating systematic

generalization.

3.1 Introduction

Although large language models have demonstrated a number of surprising mathematical and

algorithmic capabilities (Yuan et al. 2023; Wei et al. 2022), it remains unknown whether they

rediscover algorithms familiar to humans, or if they create more alien forms of mathematics and

algorithms that appear less intuitive to humans. This question can be partially answered by recent

efforts to mechanistically interpret neural networks (Scherlis et al. 2022; O’Mahony et al. 2023;

Schubert et al. 2021; Power et al. 2022; Nanda et al. 2023; Zhong et al. 2023). The holy grail of

mechanistic interpretability is to decode model weights into interpretable algorithms. This is quite

challenging because we have limited clues as to where to look and what to look for. Luckily, the

inverse problem, how to encode an interpretable algorithm into model weights (Lindner et al. 2023),

may shed light on what an interpretable model may look like. Models converted from existing

algorithms are by definition interpretable, but their limitations are also obvious: they rule out the

possibility of new interpretable algorithms that no human has never stumbled upon (for whatever

reason) but are nevertheless interpretable.

This brings up a dilemma of mechanistic interpretability: a trained model is flexible but too

uninterpretable, whereas a constructed model is interpretable but too inflexible. This raises the
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question of whether there is a way to balance between interpretability and flexibility. Ideally,

we hope for models to reveal new algorithms that are undiscovered but which remain within

the reach of human understanding. We propose to use hypernetworks (Chauhan et al. 2023)

for such a purpose. Intuitively, we find that hypernetworks are well-suited to this task because:

(1) hypernetworks can generate “regular patterns of weights”, which are similar to the notion

of interpretability; and (2) hypernetworks enable control over model complexity, so instead of

generating one interpretable network, hypernetworks can generate a diverse family of networks

with varying degrees of complexity. 1

We focus on the simple example task of computing the L1 norm of a vector. Although this

task seems extremely simple and feels fully understood, our hypernetwork is able to generate

new algorithms which appear less intuitive to humans yet still remain interpretable with a little

overhead of reverse engineering. These new algorithms shed light on how neural networks may

do computation or process information in ways that are different from humans. In particular,

we identify in our neural networks three types of algorithms for computing the L1 norm: the

double-sided algorithm, the pudding algorithm, and the convexity algorithm (see Figure 3.1), though

the authors only expected the double-sided algorithm to be learned before experiments revealed

otherwise. By contrast, a conventionally trained network appears to be highly uninterpretable, with

no clear patterns in weights or activations (see Figure 3.6). We further define order parameters to

auto-classify these algorithms and find intriguing phase transitions between their occurrences, either

in training, or when model complexity is varied. By ablating our hypernetwork, we also find that

hypernetworks produce the pudding algorithm in two main ways, only one of which is disrupted by

the ablation. We also show that a trained hypernetwork can correctly construct models for input

dimensions not seen in training, demonstrating algorithmic generalization.

Our results highlight the complexity of mechanistic descriptions even in models trained to

perform extremely simple mathematical tasks. We encourage the use of hypernetworks to help

future works explore full algorithmic spaces in a controlled and systematic way.

1See Appendix 3.A for more discussion.
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Figure 3.1: Three algorithms for computing the L1 norm, discovered by the hypernetwork. Left:
the convexity algorithm. Center top: the negative pudding algorithm. Center bottom: the positive
pudding algorithm. Right: the double-sided algorithm. The output neuron is in the center of all
visualizations. The visualization method is included in Appendix 3.B.1.
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3.2 L1 Network Experiments

In this section, we explain how all the networks we trained can compute the L1 norm. All of our

networks are two-layer MLPs with 16 inputs, 48 hidden neurons, and 1 output, with swish activation

(Ramachandran, Zoph, and Q. V. Le 2017) (Hendrycks and Gimpel 2016). The training data is

randomly generated online by sampling the inputs from i.i.d standard normal distribution, and by

shifting and rescaling the target L1 norm outputs so that they have zero mean and unit variance.

We train a hypernetwork to generate good weights for this network. Our hypernetwork has a

hyperparameter β which controls the balance between the objectives of loss and model complexity

(which we measure using a KL divergence). A higher β values simplicity over reducing loss,

and a lower β values reducing loss over simplicity. Since our goal is to interpret the generated

networks, we mostly treat the hypernetwork as a black box. Details for the internal structure of our

hypernetwork are in Appendix 3.B.2. For our purposes, it suffices to remember that a hypernetwork

can generate networks whose complexity can be controlled via β. As a result of this training,

we have many models saved at various points in training for many β values. Moreover, we tried

33 random seeds, so we have 33 independently sampled copies of all of these models. We find

that three algorithms are discovered by the hypernetwork: the convexity algorithm, the pudding

algorithm and the double-sided algorithm, shown in Figure 3.1.

3.2.1 Interpretation of Generated Networks

In this section, we deconstruct the algorithms performed by the networks generated by our hy-

pernetworks. We determined these algorithms by looking at force-directed graph drawings of the

learned networks (Kobourov 2012). Force-directed graph drawings are a way to visualize graphs

of computations by organizing the nodes on the plane of a drawing, to make diagrams of these

graphs more intuitive to read. Our force-directed graph drawings assign a position on a drawing to

every neuron to minimize an energy consisting of mutual repulsion, connection strength weighted

attraction, and central attraction (Bannister et al. 2013). Full details of how we generate these
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drawings can be found in Appendix 3.B.1. One can alternatively choose other visualization methods,

but we find force-directly graph drawings especially useful since they make symmetries explicit

(see Figure 3.1) hence one can simply distinguish different algorithms by noticing their symmetries

and other visual traits. By looking at these drawings, we found that networks generally compute the

L1 norm using one of three main algorithms:

• The Double-sided Algorithm An absolute value function can be constructed with two ReLU

neurons, i.e., |x| = ReLU(x) + ReLU(−x). It is thus reasonable to expect a neural network

to perform L1 computation by summing absolute values of all dimensions 2:

||x||1 =
16∑
i=1

ReLU(xi) +
16∑
i=1

ReLU(−xi) (3.1)

Indeed, this is one possible algorithm that the hypernetwork produces.

• The (Signed) Pudding Algorithm It turns out that there is another method of computing the

L1 norm using ReLUs. The hypernetworks that generate the pudding algorithm have learned

to take advantage of the following fact:

||x||1 =2
16∑
i=1

ReLU(∓xi)±
16∑
i=1

xi (3.2)

≈ lim
c→∞

2
16∑
j=1

ReLU(∓xj ±
16∑
i=1

xi) +
32∑
j=1

(
ReLU(c±

16∑
i=1

xi)− c

)
(3.3)

which holds for both signs ± (hence the name “signed pudding”), where i iterates through

input neurons and j through hidden neurons. The signed pudding algorithm assigns one

hidden neuron to each input neuron i to compute the first summation, and uses the leftover

hidden neurons to compute the second summation term. Note that only one neuron is actually

needed to compute the second term, and so this algorithm can actually be implemented

with n+ 1 hidden neurons, which is more efficient than the 2n needed for the double-sided
2Note that we are actually using the SiLU activation, but SiLU and ReLU share similar qualitative behavior: a

zoomed out plot of a swish function looks like a ReLU.
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algorithm. The pudding algorithm is almost always implemented imperfectly, as in Equation

3.3. The hypernetwork uses a hard-coded assignment of pairs of hidden neurons to input

neurons; changing the generation seed does not change the order of the hidden neurons. This

is the most common algorithm found in our experiments.

• The Convexity Algorithm This is an imperfect random algorithm that is easy for the

hypernetwork to produce. This algorithm notices that the L1 norm is a convex function, and

it tries to match the convexity using randomly oriented swish functions:

||x||1 ≈ α
48∑
j=1

swish

(
16∑
i=1

W
(0)
ij xi

)
, W

(0)
ij ∼ D (3.4)

with α some constant and D some distribution that is typically symmetric. Sometimes the

distribution of D is unimodal, and sometimes it is bimodal.

3.2.2 Order Parameters

Having identified that our experiments mainly consist of three algorithms, we construct a number of

order parameters below to distinguish the three algorithms apart from one another.

Double Sidedness: Given the weight matrix W ∈ Rn0×n1 for the first linear layer (bias not

included) where n0 is the number of input neurons and n1 is the number of hidden neurons, the

double sidedness order parameter α1 is defined as:

α1 =
min

i
min(−min

j
Wij,max

j
Wij)

median
i,j

abs(Wij)
(3.5)

The double sidedness measures the degree to which the solution uses the double-sided algorithm.

Strongest Connection: The strongest connection order parameter α2 is defined as:

α2 = max
i,j

abs(Wij) (3.6)
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Figure 3.2: Networks that try to compute the L1 norm cluster into three general algorithms in
order parameter space, spanned by the “strongest connection”, “double-sidedness” and “seed
dependence” order parameters. Lines are generated by sweeping β from 10−12 to 1 in 30 increments
logarithmically. The dotted lines represent hand-picked boundaries which determine when phase
transitions between algorithms occur. Lines are grouped and colored by the phases where they start
and end at.

A weak strongest connection is indicative of the convexity solution.

Seed Dependence: The seed dependence order parameter α3 is defined as:

||W − V ||2F
||W ||2F + ||V ||2F

(3.7)

where W and V are weight matrices for the first linear layer (bias not included) generated with

different randomization seeds using the same hypernetwork. A low seed dependence indicates

that the hypernetwork is using memorized information about configurations of weights rather than

generating this information randomly.

The networks divide themselves roughly into three clusters in order parameter space, each

corresponding to one algorithm, as shown in Figure 3.2. While the seed dependence is not

immediately relevant since it does not differentiate between algorithms, we will explain later

that it can be used to investigate the way that the hypernetwork constructs the pudding algorithm.
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3.2.3 Development of Algorithms Throughout Training

Using the order parameters, we automatically classified the algorithms which developed at various

points during training for various β values, as in Figure 3.3. We find that the convexity algorithm

always develops first, and that other algorithms differentiate away from there. The convexity

algorithm can evolve into either the pudding or double-sided algorithms, and the pudding algorithm

sometimes also transitions into the double-sided algorithm. Transitions to the pudding algorithm

can happen either for only low β or for all β. Oftentimes, the high β regime retains the convexity

algorithm while the low β regime evolves though multiple algorithms, and the β value of the

transition boundary increases over time and then stabilizes.
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Figure 3.3: Five ways to develop the three algorithms through training. The horizontal axis is the
step number, while the vertical axis is the β parameter used to generate the network. Red: convexity
algorithm. Green: pudding algorithm. Blue: double-sided algorithm.

It is worth noting that in Figure (3.3d) the hypernetwork becomes insensitive to β. In this

case, the hypernetwork’s accumulated KL divergence sums up to nearly zero for all β, causing

the Pareto frontier between loss and simplicity to collapse to a single point. This is not the

case for the other cases that develop the pudding algorithm; the KL divergence usually increases
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Figure 3.4: Loss of neural network generated when the encoder is either used or ignored. The black
dotted line indicates when the performance is unaffected by the presence of the encoder, i.e., when
the encoder is unused during the weight generation process. Lines are generated by sweeping β
from 10−12 to 1 in 30 logarithmic increments.

considerably for lower β. We believe that in case (3.3d), the hypernetwork randomly generates

an assignment of hidden neurons to input neurons, while in the other cases, the hypernetwork

stores a memorized assignment on the decoder side and passes it through to the encoder for output.

Thus, the hypernetwork accumulates KL in all cases except (3.3d). To test this hypothesis, we

generated another network using only the decoder side of the hypernetwork without the encoder

side3, and evaluated its loss on the L1 problem again. Removing the encoder should prevent the

hypernetwork from using any memorized assignments, without affecting its ability to randomly

generate an assignment. Indeed, Figure 3.4 shows that when we remove the encoder, hypernetworks

in case (3.3d) are still able to construct working L1 networks that implement the pudding algorithm,

but hypernetworks in other cases are not.

3by drawing latents from the distribution defined by the decoder side instead of the encoder side
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Figure 3.5: Loss of neural network generated with various input dimensions and hidden dimensions
using a hypernetwork. The red contour denotes a loss of 0.07, while the blue denotes a loss of
0.15. The hypernetwork was only trained to generate networks with input dimension 16 and hidden
dimension 48 (yellow star), yet it can produce networks of diverse shapes which all compute the L1
norm with reasonable accuracy.

3.2.4 Generalization Capabilities

A key feature of the assignment generation hypothesis is that implies hypernetworks in case (3.3d)

can generate L1 networks of different layer sizes, because all the configurations of weights are

automatically randomly generated instead of being memorized specifically for the (16, 48, 1) layer

size structure. We can therefore use an existing hypernetwork to generate networks that compute

the L1 norm in a wide range of dimensions, including dimensions larger than 16 which is what the

hypernetwork was trained for. The hidden layer size can also be modified to be larger or smaller in

the same way. Figure 3.5 shows that many of these L1 networks perform similarly to the original

(16, 48, 1) network. We find that there is a region of low loss which extends in the direction of

increasing input dimension and hidden dimension, leading us to believe that the hypernetwork

has found a general algorithm for computing L1 norms of vectors of any arbitrarily large size,

demonstrating systematic generalization.
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3.2.5 Baseline Algorithm

As a baseline, we used Adam (Kingma and Ba 2014) to train the same L1 norm network instead

of generating the weights using a hypernetwork. The resulting network has a lower loss than the

networks generated via hypernetwork, but it is much more difficult to interpret. This is already

visible in the cleanliness of the visualization for the hypernetwork in comparison to Adam, as shown

in Figure 3.6.

(a) Trained by Adam. (b) Generated via hypernetwork.

Figure 3.6: Visualization of a (16, 48, 1) neural networks trained to compute the L1 norm of a vector.
Input neurons in green, output neurons in magenta. Positive weights in red, and negative weights in
blue. The Adam-trained network is messy, whereas the hypernetwork-generated network is much
easier to interpret.

Since the Adam-trained L1 norm network is much harder to interpret, we only have a hypothesis

about how it computes the L1 norm, which is as follows. In the Adam-trained L1 norm network,

hidden neurons are split into two groups: some that are assigned to a single input neuron, and the

leftover hidden neurons that are attached to all input neurons. Each input neuron then uses any of its

assigned hidden neuron(s) to create a kink of appropriate difference in slope between the positive

and negative sides, and the leftover hidden neurons are used to correct the average slope between the

two sides, forming an absolute value function for that input neuron. The absolute value functions
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for each input neuron are then added together. This is like the pudding algorithm except that there

can be many hidden neurons assigned to one input neuron (e.g., 5 hidden neurons, +++−−) and

that the corresponding weights can differ in their sign. Signs for all weights connecting to any given

leftover hidden neuron are randomized, and each input neuron connects to every leftover hidden

neuron with a different random strength, provided that all the weights satisfy the constraints above.

The takeaway is that the network trained by Adam is unnecessarily complex and variable due to the

randomness involved, whereas a much simpler and more interpretable solution exists that can be

found via hypernetworks.

3.3 Related Work

Hypernetworks Most current hypernetwork research focuses on how we can use hypernetworks

to predict different attributes of a model in a particular setting without having to train it in that

setting, for example it’s loss, accuracy, or trained parameters (Zhang, Ren, and Urtasun 2018)

(Knyazev, Drozdzal, et al. 2021). This information can be used to design an architecture with

lower loss, skip some training steps (Knyazev, Hwang, and Lacoste-Julien 2023), adjust the

parameters based on different loss functions (Navon et al. 2020), and more. Our work instead uses

hypernetworks to compress and generate data that comes in the form of neural network weights.

Training hypernetworks typically involves computing hypergradients (Baydin et al. 2017), and our

work is no exception to this.

Minimum description length The minimum description length (MDL) principle is a mathe-

matical version of Occam’s razor that prefers the most compressed explanation for a given dataset

(Grünwald 2007; Grünwald and Roos 2019; Rissanen 1978; Solomonoff 2009). The MDL prin-

ciple can treat a neural network’s learning as the process of information compression, so that the

complexity of a model is expressed by various KL divergences that form the loss to be minimized

(Chaitin 1975; Polyanskiy and Y. Wu n.d.). The MDL principle implies that our hypernetwork is

trying to find weights which are as simple as possible for solving the task. The weights’ simplicity
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makes them easier for humans to pick apart: the resulting model should be very interpretable, and

this fact is the main driving force of this paper.

Neural network compression While we were building a compressor to compress neural

networks, we noticed that most machine learning systems compress sets of weights with techniques

(Tibshirani 1996; Frankle and Carbin 2018; Tan and Q. Le 2019; White et al. 2023; Redmon

and Farhadi 2018) that are different to how data from a dataset is typically compressed (Kingma

and Welling 2013; Kobyzev, Prince, and Brubaker 2020; Vahdat and Kautz 2020; Sønderby et al.

2016; Child 2020; Vaswani et al. 2017; OpenAI 2023; Touvron et al. 2023). When we tried to use

techniques for data compression to compress weights instead, it turned out we were constructing

systems that are commonly known as hypernetworks (Chauhan et al. 2023). Our hypernetwork’s

architecture is based on graph neural networks, self-attention, and deep hierarchical VAEs, all in

combination.

Mechanistic Interpretability Research on mechanistic interpretability helps us explain how

neural networks operate at the individual neuron level, so that we can understand why they produce

certain outputs. This lets us build safer models that we can have better trust in for applications that

need this trust. Landmark works in interpretability have included the discovery of polysemantic

neurons (Scherlis et al. 2022; O’Mahony et al. 2023), high-low frequency detectors (Schubert et al.

2021), edge detectors, arithmetic representations (Power et al. 2022), modularity (Liu, Gan, and

Tegmark 2023), and algorithmic circuits (Nanda et al. 2023; Zhong et al. 2023; Wang et al. 2022).

3.4 Conclusion and Discussion

In this paper, we have introduced a novel hypernetwork-based method for constructing neural

network which makes them mechanistically interpretable. We then used this method to construct

networks which compute the L1 norm and mechanistically interpreted them.

We found that the hypernetwork-generated L1 norm networks implement three main algorithms

for computing the L1 norm, and they represent different tradeoffs between their errors and the
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model simplicity. This tradeoff can be manipulated by the β hyperparameter, which controls the

relative weight of error vs. simplicity. The algorithm most expected by humans is the double-

sided algorithm, which is the hardest to learn and the most accurate. We constructed three order

parameters, two of which we use to automatically classify neural networks according to the three

algorithms. We find that the three algorithms develop in different β regimes and at different times

during training. Namely, the convexity algorithm is the easiest to learn, simplest, and the one that

develops at greatest β, followed by the pudding algorithm, followed by the double-sided algorithm.

The pudding algorithm is even more simple than the expected double-sided, in that it can be used

to compute the L1 norm with fewer hidden neurons, than what the authors originally thought was

possible.

There is also value in developing explanations for how the hypernetworks themselves learn to

build neural networks. We find that the hypernetworks develop two main methods for constructing

networks which operate via the pudding algorithm: one which constructs a random assignment of

hidden neurons to input neurons and another which uses a memorized assignment whose information

content is penalized. We demonstrate that hypernetworks which construct random assignments

can be used to generate working L1 networks to operate on different, sometimes even larger input

sizes and hidden dimensions. This works completely in inference time, without any retraining. The

hypernetwork’s ability to generalize to other input dimensions signals that the hypernetwork has

learned an algorithm for computing L1 norms in general for any input vector size, rather than just

a circuit that computes an L1 norm with a fixed input size that cannot generalize to other sizes.

This work is a preliminary report that showcases the potential of hypernetworks for interpretability

research. In the future we hope to generalize the analysis of hypernetwork to more complicated

realistic problems.
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3.A Intuition of Why Hypernetworks Work

In this section, we seek to provide a rough understanding of how we use our hypernetwork to

generate weights and why we expect the resulting networks to be interpretable. Most important is

the fact that the hypernetwork’s outputs are used as the weights of the neural network (Chauhan

et al. 2023). Altogether, our hypernetwork architecture consists of two graph transformers (Ying

et al. 2021) which operate on the computation graph of the target network, serving as the encoder

and decoder side of a hierarchical variational autoencoder (HVAE) (Vahdat and Kautz 2020;

Sønderby et al. 2016; Child 2020). The weights of the hypernetwork are generated by a Pareto

hyperhypernetwork (Navon et al. 2020) which receives the HVAE β hyperparameter (Higgins et al.

2017) as input. The exact details of our hypernetwork and hyperhypernetwork architectures can be

found in Appendix 3.B.2. Since our hypernetwork is a merge between a graph transformer and a

HVAE, there are multiple lenses through which we understand our hypernetwork design:

The Hypernetwork Interpretation. The hypernetwork is a neural network whose output is

used as the weights for a neural network (Chauhan et al. 2023). For input, the hypernetwork is

given information about every weight it needs to generate, such as the layer number and indices to

identify the input and output neurons that it is connected to. The hypernetwork can then learn a

general process for configuring each individual weight depending on its location within the network.

Simpler configurations are easier to learn, and thus the resulting networks tend to be simpler, and

thus more interpretable.

The GNN Interpretation. A neural network is a computation graph, so the most natural way

to manipulate weight data is through a graph neural network (GNN) (L. Wu et al. 2022; Scarselli

et al. 2009; Sanchez-Lengeling et al. 2021; Daigavane, Ravindran, and Aggarwal 2021). The

hypernetwork is a graph transformer, whereby information is stored at the edges and is sent to and

from adjacent nodes where attention heads operate. This allows the hypernetwork to compute based

on how weights are mutually related to one another within the architecture (which itself does not

need to be fixed either). This allows the hypernetwork to form structures of weights which are

76



connected to the way the architecture is structured and are thus more likely to be interpretable.

The MDL/Compression Interpretation. Our hypernetwork is an application of the minimum

description length (MDL) principle, which treats learning as a data compression procedure described

by a mathematical version of Occam’s razor (Grünwald 2007; Grünwald and Roos 2019; Rissanen

1978; Solomonoff 2009). The MDL principle treats a neural network as a compressor, so that we

can speak of the “Occam simplicity” of a model through KL divergences, which measure how well

that model compresses a dataset in an information theoretic sense. (Chaitin 1975; Polyanskiy and

Y. Wu n.d.) For our case, the dataset consists of the neural network weights and the compressor

is the hypernetwork; the hypernetwork is an encoding/decoding system for compressing neural

network weights into as simple a latent representation as possible, and networks derived from

simpler representations are more interpretable.

The Generative Model Interpretation. Our hypernetwork is a generative model for data in

the form of neural network weights. In the past, generative models were developed for and have

been successful in generating human-interpretable forms of data, such as natural language (OpenAI

2023; Touvron et al. 2023) and images (Ho, Jain, and Abbeel 2020). Thus, we may expect that a

generative model for data in the form of neural network weights would naturally have an inductive

bias for human-interpretable weights.

3.B Method

3.B.1 Force-Directed Graph Drawings

Throughout this paper, we use a force-directed graph drawing algorithm to visualize neural networks

as computation graphs. Force-directed graph drawing algorithms try to position every node in the

plane to minimize clutter and account for several visual quality measures, such as edge overlaps,

drawing area, and symmetry. Typically, such an algorithm defines an energy consisting of a sum of

several components which each depend on the node positions, and the node positions are adjusted

to minimize this energy via gradient descent. In our case, we apply three components: 1/r pairwise
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repulsion between all neurons, kr2 pairwise attraction for weights of absolute value k, and r2

attraction pulling all neurons towards the origin.

This graph drawing algorithm will help us to observe the structure of weights in the neural

networks which we train in this paper, so that we may more easily understand how they function.

Most importantly, it allows us to observe modularity, which is when individual parts of a learned

neural network compute their operations individually without interaction. This is because the

modules may form separate connected components which stay self-connected but repel each other

in the drawn graph, making components easy to identify.

One of the main issues with force-directed graph drawing is that the gradient descent often falls

into local minima of the energy, since two separate modules in the network can become tangled up,

after which point the modules can no longer slide past one another and separate properly. To remedy

this, we position the nodes in four dimensions instead of two (this provides mode connectivity), and

we apply an increasingly strong decay to the two excess dimensions during gradient descent until

they disappear, leaving a fully two-dimensional arrangement. This arrangement can be rescaled as

needed for the visualization.

3.B.2 Attentional Hypernetworks

In this section, we explain in more detail how we use a hypernetwork to generate the weights of

the MLP which we would like to train. Instead of learning the MLP weights directly, we learn

the “hyperweights” of this hypernetwork. We generate the MLP weights every iteration as part of

the forward pass when doing gradient descent. Figure 3.7 fully depicts all the components of the

hypernetwork, and in the following text and sections below, we will explore each of the components

in detail.

We design the hypernetwork in a way so that it has an inductive bias to create certain structures

and formations of weights with more ease than others. For example, we may want the hypernetwork

to tell the weights how to self-organize into many duplicates of a specific circuit, which are then

connected together in a formation, rather than many unrelated circuits connected in a more complex
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manner. Given that these structures are organized, with a limited number of hyperweights, it might

be easier to learn a method of constructing such structures rather than the structures themselves. We

believe that and inductive bias for learning such methods should best arise from clever forms of

parameter reuse, just as convolutional filters are best for translationally equivariant computations. As

such, our hypernetwork operates much like a graph transformer, whose computations are duplicated

across all nodes and edges.

For every component of the MLP, there is an analogous component for our hypernetwork, which

itself can somewhat be thought of like an MLP. For example, the hypernetwork has hyperfeatures,

hyperlayers, hyperwidth, hyperdepth, and hyperactivations in the same way that the MLP (or

“network”) has features, layers, width, depth, and activations.

For our network architecture, we restrict ourselves to a neural network consisting of weights

W (ℓ) ∈ Rni+1×ni and biases b(ℓ) ∈ Rni+1 with N layers:

a
(ℓ+1)
j = σ(b

(ℓ)
j +

∑
i

W
(ℓ)
ij a

(ℓ)
i )

with a
(1)
i the input vector and b

(N)
j +

∑
iW

(N)
ij a

(N)
i the output vector.

We will now describe our hypernetwork architecture. The fundamental unit of data processed by

the hypernetwork is a high-dimensional ragged tensor of “hyperactivations” containing information

about every weight in the network. Each “hyperlayer” operates by applying many operations which

serve to perform computations that only conduct information along individual axes of the tensor.

For example, if we have a hyperactivation tensor pertaining to a 4 dimensional CNN filter tensor

with an x axis, we might apply a blur filter along the corresponding x axis of the hyperactivation

tensor while treating all other dimensions as batch dimensions, duplicating this operation for all

indices.

Returning from the CNN example to our MLP network, we designate the last axis as special,

and we call it the “hyperfeature” dimension, analogous to the feature dimension in the MLP. The

hyperactivation tensor is sliced into many blocks along the hyperfeature axis, and each block under-
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goes its own operation along its own designated axis (all other axes treated as batch dimensions),

then the results are concatenated back together in the hyperfeature dimension. A linear operation in

the hyperfeature axis can then be used to control the movement of data between these individual

blocks, allowing for movement of data in every direction of the tensor. A good analogy is the way

that trains can be shunted onto different tracks, where they may travel in different directions or

undergo different procedures. This all can then be repeated multiple times by stacking together

multiple of these hyperlayers. We will index hyperlayers using the variable ℓ′ since we are indexing

layers with ℓ, and let us call the number of hyperlayers the “hyperdepth” N ′, which we set to 4.

We will now roughly describe how we construct a hyperactivation tensor from the MLP weights.

We can summarize the MLP weights using a ragged tensor W (ℓ)
ij indexed by input neuron i, output

neuron j, and layer ℓ. The hyperactivation tensor then has the same shape, except that it has an

additional hyperfeature axis indexed by a variable i′.

The operations performed on blocks of the hyperactivation tensor are treated like activation

functions for the hypernetwork. For a hyperactivation tensor with indices i, j, ℓ, and i′, a block is

processed with each of the following operations:

• x → σ(x). Elementwise activation function. Used on a block of 20 hyperfeatures.

• Nothing → Positional encoding of i if ℓ = 1, else a zero tensor.

• Nothing → Positional encoding of j if ℓ = N , else a zero tensor.

• Nothing → Positional encoding of ℓ.

• Nothing → 5 hyperfeatures of random i.i.d. samples from a standard normal distribution.

• A self-attention head for every neuron in the network. Each edge feeds 3 sub-blocks of the

hyperactivation tensor—the keys, queries, and values—to the neuron in front and another 3

sub-blocks to the neuron behind, and concatenates the results received from both sides. The

keys, queries, and values are all 5 hyperfeatures in size.
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The output of the final hyperlayer has two hyperfeatures—one is used as the weight tensor and

the other is averaged along the input neuron axis i and is used as the bias tensor.

Notice that this hypernetwork architecture as it stands does not contain that many learned

parameters, compared to how many MLP parameters it can generate. Even with so few parameters,

it still takes a huge amount of computation, which is necessary for the amount of parameter reuse

we want. Remember that parameter reuse is useful for the hypernetwork to produce highly patterned

structures in the network’s weights.

KL Attentional Hypernetworks

Plain attentional hypernetworks like the one described above have a certain defect: there might

be some networks that are learned more easily by gradient descent, but which are hard for the

hypernetwork to capture because they are not structured in any obvious fashion. To allow the

attentional hypernetwork to capture these circuits, we introduce another axis to the hyperactivation

tensor, which we call the KL axis.

The KL axis has two indices, representing the encoder and decoder side of an information

channel. Information is passed through this axis via two operations:

• Nothing → 5 hyperfeatures of learned variables which go along with the hyperweights during

training. These hyperfeatures are intended to capture information that can be learned by

standard gradient descent, but they are only given on the encoder side and are set to zero for

the decoder side.

• Start with two blocks of 4 hyperfeatures representing µ and σ values for normal distributions.

The total KL divergence DKL(q||p) between the encoder-side and decoder-side distributions q

and p is computed and added to an accumulator variable. The output is 4 hyperfeatures of

samples from q; a copy of these samples for each of the encoder and decoder sides to use.

The weights and biases are constructed using only the output from the decoder side.4

4By introducing the KL axis, we have essentially turned our hypernetwork into a kind of conditional hierarchical
VAE.
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In this additional axis, learning via standard gradient descent is allowed to take place, since the

hypernetwork can pass the learned variables provided to the encoder through the KL channel to the

decoder, where the variables can be output to be treated as weights and biases. But notice that any

information passing through the KL channel has its information content measured and accounted for

in an accumulator variable. This means we can suppress the usage of gradient descent algorithms by

regularizing the quantity of raw weight information which passes through. 5 Tuning the suppression

factor β allows us to control the balance between a hypernetwork which only designs very structured

patterns of weights and a hypernetwork which regurgitates unstructured patterns of learned and

memorized weights. The balance between loss and KL implicitly encourages the neural network to

develop structures like modules and duplicated circuits of neurons, as these are structures that the

hypernetwork can encode in a more compressed manner and will be penalized less for.

Hyperhypernetworks for Multi-Objective Optimization

We are now left with a multi-objective optimization problem where we would like to jointly

optimize for the network’s loss and hypernetwork’s total accumulated KL. To solve this, we use

a hyperhypernetwork to generate the hyperweights in every step during the forward pass, using

something like a Pareto Hypernetwork. This hyperhypernetwork takes log β (rescaled and shifted)

as input, has two hidden layers of size 100 and 10 with swish activation, and outputs two vectors a

and b where aσ(b) is treated as the flattened vector of hyperweights. At every iteration, we sample β

from a distribution, use the hyperhypernetwork to generate the hyperweights, use the hypernetwork

to generate the weights, and use log(L+ βDKL) as the objective, where L is the network’s loss and

DKL is the hypernetwork’s accumulated KL.

5Note that the feedback in the channel lets the hypernetwork perform simpler computations without destroying the
ELBO bound in the VAE interpretation of our hypernetwork.
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Figure 3.7: The full architecture of the hypernetwork. The hyperhypernetwork above generates
weights for the hypernetwork, which generates weights for the network, on which the loss is
evaluated. There are many components in the hypernetwork, each drawn individually on the left:
graph attention, positional encodings, information bottleneck channels, learned hyperfeatures, and
random variables.
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Opening the AI black box: Program
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ABSTRACT

We present MIPS, a novel method for program synthesis based on automated mechanis-

tic interpretability of neural networks trained to perform the desired task, auto-distilling

the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorith-

mic tasks that can be learned by an RNN and find it highly complementary to GPT-4:

MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves

30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine,

then applies Boolean or integer symbolic regression to capture the learned algorithm.

As opposed to large language models, this program synthesis technique makes no use
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of (and is therefore not limited by) human training data such as algorithms and code

from GitHub. We discuss opportunities and challenges for scaling up this approach to

make machine-learned models more interpretable and trustworthy.

4.1 Introduction

Machine-learned algorithms now outperform traditional human-discovered algorithms on many

tasks, from translation to general-purpose reasoning. These learned algorithms tend to be black-box

neural networks, and we typically lack a full understanding of how they work. This has motivated

the growing field of mechanistic interpretability, aiming to assess and improve their trustworthiness.

Major progress has been made in interpreting and understanding smaller models, but this work has

involved human effort, which raises questions about whether it can scale to larger models. This

makes it timely to investigate whether mechanistic interpretability can be fully automated (Tegmark

and Omohundro 2023).

The goal of the present paper is to take a modest first step in this direction by presenting and

testing MIPS (Mechanistic-Interpretability-based Program Synthesis), a fully automated method

that can distill simple learned algorithms from neural networks into Python code. The rest of this

paper is organized as follows. After reviewing prior work in Section II, we present our method in

Section III, test it on a benchmark in Section IV and summarize our conclusions in Section V.

4.2 Related Work

Program synthesis is a venerable field dating back to Alonzo Church in 1957; Zhou and Ding (2023)

and Odena et al. (2020) provide recent reviews of the field. Large language Models (LLMs) have

become increasingly good at writing code based on verbal problem descriptions or auto-complete.

We instead study the common alternative problem setting known as “programming by example"

(PBE), where the desired program is specified by giving examples of input-output pairs (Wu et al.
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2023). The aforementioned papers review a wide variety of program synthesis methods, many

of which involve some form of search over a space of possible programs. LLMs that synthesize

code directly have recently become quite competitive with such search-based approaches (Sobania,

Briesch, and Rothlauf 2022). Our work provides an alternative search-free approach where the

program learning happens during neural network training rather than execution.

Our work builds on the recent progress in mechanistic interpretability (MI) of neural net-

works (Olah et al. 2020; Cammarata et al. 2020; Wang et al. 2022; Olsson et al. 2022). Much MI

work has tried to understand how neural networks represent various types of information, e.g., geo-

graphic information (Goh et al. 2021; Gurnee and Tegmark 2023), truth (Burns et al. 2022; Marks

and Tegmark 2023) and the state of board games (McGrath et al. 2022; Toshniwal et al. 2022; Li et al.

2022). Another major MI thrust has been to understand how neural networks perform algorithmic

tasks, e.g., modular arithmetic (Nanda et al. 2023; Z. Liu et al. 2022; Zhong et al. 2023; Quirke et al.

2023), greater-than (Hanna, O. Liu, and Variengien 2023), and greatest-common-divisor (Charton

2023).

Whereas Lindner et al. (2023) automatically convert traditional code into a neural network, we

aim to do the opposite. Other recent efforts to automate MI include identifying a sparse subgraph of

the network whose units are causally relevant to a behavior of interest (Conmy et al. 2023; Syed,

Rager, and Conmy 2023) and using LLMs to label internal components of neural networks, for

instance neurons (Bills et al. 2023) and features discovered by sparse autoencoders (Cunningham

et al. 2023; Bricken et al. 2023).

4.3 MIPS, our program synthesis algorithm

As summarized in Figure 4.1, MIPS involves the following key steps.

1. Neural network training

2. Neural network simplification

3. Finite state machine extraction
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Figure 4.1: The pipeline of our program synthesis method. MIPS relies on discovering integer
representations and bit representations of hidden states, which enable regression methods to figure
out the exact symbolic relations between input, hidden, and output states.
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4. Symbolic regression

Step 1 is to train a black-box neural network to learn an algorithm that performs the desired task. In

this paper, we use a recurrent neural network (RNN) of the general form

hi = f(hi−1,xi), (4.1)

yi = g(hi), (4.2)

that maps input vectors xi into output vectors yi via hidden states hi. The RNN is defined by

the two functions f and g, which are implemented as feed-forward neural networks (MLPs) to

allow more model expressivity than for a vanilla RNN. The techniques described below can also be

applied to more general neural network architectures.

Step 2 attempts to automatically simplify the learned neural network without reducing its

accuracy. Steps 3 and 4 automatically distill this simplified learned algorithm into Python code.

When the training data is discrete (consisting of say text tokens, integers, or pixel colors), the neural

network will be a finite state machine: the activation vectors for each of its neuron layers define

finite sets and the entire working of the network can be defined by look-up tables specifying the

update rules for each layer. For our RNN, this means that the space of hidden states h is discrete,

so that the functions f and g can be defined by lookup tables. As we will see below, the number

of hidden states that MIPS needs to keep track of can often be greatly reduced by clustering them,

corresponding to learned representations. After this, the geometry of the cluster centers in the

hidden space often reveals that they form either an incomplete multidimensional lattice whose

points represent integer tuples, or a set whose cardinality is a power of two, whose points represent

Boolean tuples. In both of these cases, the aforementioned lookup tables simply specify integer or

Boolean functions, which MIPS attempts to discover via symbolic regression. Below we present an

integer autoencoder and a Boolean autoencoder to discover such integer/Boolean representations

from arbitrary point sets.

We will now describe each of the three steps of MIPS in greater detail.
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4.3.1 AutoML optimizing for simplicity

We wish to find the simplest RNN that can learn our task, to facilitate subsequent discovery of the

algorithm that it has learned. We therefore implement an AutoML-style neural architecture search

that tries to minimize network size while achieving perfect test accuracy. This search space is defined

by a vector p of five main architecture hyperparameters: the five integers p = (n,wf , df , wg, dg)

corresponding to the dimensionality of hidden state h, the width and depth of the f -network, and

the width and depth of the g-network, respectively. Both the f - and g-networks have a linear final

layer and ReLU activation functions for all previous layers. The hidden state h0 is initialized to

zero.

To define the parameter search space, we define ranges for each parameter. For all tasks, we use

n ∈ {1, 2, . . . , 128}, wf ∈ {1, 2, . . . , 256}, df ∈ {1, 2, 3}, wg ∈ {1, 2, . . . , 256} and dg ∈ {1, 2, 3},

so the total search space consists of 128×256×3×256×3 = 75, 497, 472 hyperparameter vectors

pi. We order this search space by imposing a strict ordering on the importance of minimizing each

hyperparameter – lower dg is strictly more important than lower df , which is strictly more important

than lower n, which is strictly more important than lower wg, which is strictly more important than

lower wf . We aim to find the hyperparameter vector (integer 5-tuple) pi in the search space which

has lowest rank i under this ordering.

We search the space in the following simple manner. We first start at index i = 65, 536, which

corresponds to parameters (1, 1, 2, 1, 1). For each parameter tuple, we train networks using 5

different seeds. We use the loss function ℓ(x, y) = 1
2
log[1 + (x− y)2], finding that it led to more

stable training than using vanilla MSE loss. We train for either 10,000 or 20,000 steps, depending on

the task, using the Adam optimizer, a learning rate of 10−3, and batch size 4096. The test accuracy

is evaluated with a batch of 65536 samples. If no networks achieve 100% test accuracy (on any

test batch), we increase i by 21/4. We proceed in this manner until we find a network where one of

the seeds achieves perfect test accuracy or until the full range is exhausted. If we find a working

network on this upwards sweep, we then perform a binary search using the interval halving method,
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starting from the successful i, to find the lowest i where at least one seed achieves perfect test

accuracy.

4.3.2 Auto-simplification

After finding a minimal neural network architecture that can solve a task, the resulting neural

network weights typically seem random and un-interpretable. This is because there exist symmetry

transformations of the weights that leave the overall input-output behavior of the neural network

unchanged. The random initialization of the network has therefore caused random symmetry

transformations to be applied to the weights. In other words, the learned network belongs to an

equivalence class of neural networks with identical behavior and performance, corresponding to a

submanifold of the parameter space. We exploit these symmetry transformations to simplify the

neural network into a normal form, which in a sense is the simplest member of its equivalence class.

Conversion of objects into a normal/standard form is a common concept in mathematics and physics

(for example, conjunctive normal form, wavefunction normalization, reduced row echelon form,

and gauge fixing).

Two of our simplification strategies below exploit a symmetry of the RNN hidden state space h.

We can always write the MLP g in the form g(h) = G(Uh + c) for some function G. So if f is

affine, i.e., of the form f(h,x) = Wh+Vx+ b, then the symmetry transformation

W′ ≡ AWA−1, V′ = AV, U′ = UA−1, h′ ≡ Ah, b′ = Ab keeps the RNN in the same

form:

h′
i = Ahi = AWA−1Ahi−1 +AVxi +Ab

= W′−1h′
i−1 +V′xi + b′, (4.3)

yi = G(Uhi + c) = G(UA−1h′
i + c)

= G(U′h′
i + c). (4.4)

We think of neural networks as nails, which can be hit by various auto-normalization hammers.
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Each hammer is an algorithm that applies transformations to the weights to remove degrees of

freedom caused by extra symmetries or cleans the neural network up in some other way. In this

section, we describe five normalizers we use to simplify our trained networks, termed “Whitening",

“Jordan normal form", “Toeplitz", “De-bias", and “Quantization". For every neural network, we

always apply this sequence of normalizers in that specific order, for consistency. We describe them

below and provide additional details about them in the Appendix 4.D.

1. Whitening: Just as we normalize input data to use for training neural networks, we would

like activations in the hidden state space hi to be normalized. To ensure normalization in all

directions, we feed the training dataset into the RNN, collect all the hidden states, compute

the uncentered covariance matrix C, and then apply a whitening transform h 7→ C−1/2h to

the hidden state space so that its new covariance becomes the identity matrix. This operation

exists purely to provide better numerical stability to the next step.

2. Jordan normal form: When the function g is affine, we can apply the aforementioned

symmetry transformation to try to diagonalize W, so that none of the hidden state dimensions

interact with one another. Unfortunately, not all matrices W can be diagonalized, so we use a

generalized alternative: the Jordan normal form, which allows elements of the superdiagonal

to be either zero or one. To eliminate complex numbers, we also apply 2 × 2 unitary

transformations to eigenvectors corresponding to conjugate pairs of complex eigenvalues

afterward. The aforementioned whitening is now ruined, but it helped make the Jordan normal

form calculation more numerically stable.

3. Toeplitz: Once W is in Jordan normal form, we divide it up into Jordan blocks and apply

upper-triangular Toeplitz transformations to the dimensions belonging to each Jordan block.

There is now an additional symmetry, corresponding to multiplying each Jordan block by an

upper triangular Toeplitz matrix, and we exploit the Toeplitz matrix that maximally simplifies

the aforementioned V-matrix.

4. De-bias: Sometimes W is not full rank, and b has a component in the direction of the
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Figure 4.2: These hidden structures can be turned into discrete representations. Left: the hidden
states for the bitstring addition task are seen to form four clusters, corresponding to 2 bits: the
output bit and the carry bit. Right: the hidden states for the Sum_Last2 task are seen to form clusters
on a 2D lattice corresponding to two integers.

nullspace. In this case, the component can be removed, and the bias c can be adjusted to

compensate.

5. Quantization: After applying all the previous normalizers, many of the weights may have

become close to integers, but not exactly due to machine precision and training imperfections.

Sometimes, depending on the task, all of the weights can become integers. We therefore

round any weights that are within ϵ ≡ 0.01 of an integer to that integer.

4.3.3 Boolean and integer autoencoders

As mentioned, our goal is to convert a trained recurrent neural network (RNN) into a maximally

simple (Python) program that produces equivalent input-output behavior. This means that if the

RNN has 100% accuracy for a given dataset, so should the program, with the added benefit of being

more interpretable, precise, and verifiable.

Once trained/written, the greatest difference between a neural network and a program imple-

menting the same finite state machine is that the former is fuzzy and continuous, while the latter

is precise and discrete. To convert a neural network to a program, some discretization (“defuzzi-

fication") process is needed to extract precise information from seemingly noisy representations.
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Fortunately, mechanistic interpretability research has shown that neural networks tend to learn

meaningful, structured knowledge representations for algorithmic tasks (Z. Liu et al. 2022; Nanda

et al. 2023). Previous interpretability efforts typically involved case-by-case manual inspection,

and only gained algorithmic understanding at the level of pseudocode at best. We tackle this more

ambitious question: can we create an automated method that distills the learned representation and

associated algorithms into an equivalent (Python) program?

Since the tasks in our benchmark involve bits and integers, which are already discrete, the only

non-discrete parts in a recurrent neural network are its hidden representations. Here we show two

cases when hidden states can be discretized: they are (1) a bit representation or (2) a (typically

incomplete) integer lattice. Generalizing to the mixed case of bits and integers is straightforward.

Figure 4.2 shows all hidden state activation vectors hi for all steps with all training examples for

two of our tasks. The left panel shows that the 104 points hi form 22 = 4 tight clusters, which we

interpret as representing 2 bits. The right panel reveals that the points hi form an incomplete 2D

lattice that we interpret as secretly representing a pair of integers.

Bit representations

The hidden states for the 2 bits in Figure 4.2 are seen to form a parallelogram. More generally,

we find that hidden states encode b bits as 2b clusters, which in some cases form b-dimensional par-

allelograms and in other cases look more random. Our algorithm tries all (2b)! possible assignments

of the 2b clusters to bitstrings of length b and selects the assignment that minimizes the length of the

resulting Python program.

Integer lattice

As seen in Figure 4.2, the learned representation of an integer lattice tends to be both non-square

(deformed by a random affine transformation) and sparse (since not all integer tuplets occur during

training). We thus face the following problem: given (possibly sparse) samples of points hi from

an n-dimensional lattice, how can we reconstruct the integer lattice in the sense that we figure out

which integer tuple each lattice point represents? We call the solution an integer autoencoder since

it compresses any point set into a set of integer tuples from which the original points can be at least
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approximately recovered as hi = Aki + b, where A is a matrix and b is a vector that defines the

affine transformation and a set of integer vectors ki.

In the Appendix 4.A, we present a solution that we call the GCD lattice finder. For the special

case n = 1, its core idea is to compute the greatest common denominator of pairwise separations:

for example, for the points {1.7, 3.2, 6.2, 7.7...}, all point separations are divisible by A = 1.5,

from which one infers that b = 0.2 and the lattice can be rewritten as 1.5×{1,2,4,5}+0.2. For

multidimensional lattices, our algorithm uses the GCD of ratios of generalized cell volumes to infer

the directions and lengths of the lattice vectors that form the columns of A.

For the special case where the MLP defining the function f is affine or can be accurately

approximated as affine, we use a simpler method we term the Linear lattice finder, also described

in Appendix 4.B. Here the idea is to exploit that the lattice is simply an affine transformation of a

regular integer lattice (the input data), so we can simply “read off" the desired lattice basis vectors

from this affine transformation.

Symbolic regression

Once the hidden states hi have been successfully mapped to Boolean or integer tuples as

described above, the functions f and g that specify the learned RNN can be re-expressed as lookup

tables, showing their Boolean/integer output tuple for each Boolean/integer input tuple. All that

remains is now symbolic regression, i.e., discovering the simplest possible symbolic formulae that

define f and g.

Boolean regression: In the case where a function maps bits to a bit, our algorithm determines

the following set of correct Boolean formulae and then returns the shortest one. The first candidate

formula is the function written in disjunctive normal form, which is always possible. If the Boolean

function is symmetric, i.e., invariant under all permutations of its arguments, then we also write it as

an integer function of its bit sum.

Integer regression: In the case when a function maps integers to an integer, we try the following

two methods:

1. If the function is linear, then we perform simple linear regression, round the resulting
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coefficients to integers, and simplify, e.g., multiplications by 0 and 1.

2. Otherwise, we use the brute-force symbolic solver from AI Feynman (Udrescu et al. 2020),

including the 6 unary operations {>,<,∼, H,D,A} and 4 binary operations {+,−, ∗,%}

whose meanings are explained in Appendix 4.C, then convert the simplest discovered formula

into Python format.

Once symbolic formulas have been separately discovered for each component of the vector-valued

functions f and g, we insert them into a template Python program that implements the basic loop

over inputs that are inherent in an RNN. We present examples of our auto-generated programs in

Figures 4.3 and 4.4 and in Appendix 4.F.

4.4 Results

We will now test the program synthesis abilities of our MIPS algorithm on a benchmark of algorith-

mic tasks specified by numerical examples. For comparison, we try the same benchmark on GPT-4

Turbo, which is currently (as of January 2024) described by OpenAI as their latest generation model,

with a 128k context window and more capable than the original GPT-4.

4.4.1 Benchmark

Our benchmark consists of the 62 algorithmic tasks listed in Table 4.1. They each map one or

two integer lists of length 10 or 20 into a new integer list. We refer to integers whose range is

limited to {0, 1} as bits. We generated this task list manually, attempting to produce a collection

of diverse tasks that would in principle be solvable by an RNN. We also focused on tasks whose

known algorithms involved majority, minimum, maximum, and absolute value functions because

we believed they would be more easily learnable than other nonlinear algorithms due to our choice

of the ReLU activation for our RNNs. The benchmark training data and project code is available

at https://github.com/ejmichaud/neural-verification. The tasks are described in Table 4.1, with

additional details in Appendix 4.E.
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Since the focus of our paper is not on whether RNNs can learn algorithms, but on whether

learned algorithms can be auto-extracted into Python, we discarded from our benchmark any

generated tasks on which our RNN-training failed to achieve 100% accuracy.

Our benchmark can never show that MIPS outperforms any large language model (LLM). Be-

cause LLMs are typically trained on GitHub, many LLMs can produce Python code for complicated

programming tasks that fall outside of the class we study. Instead, the question that our MIPS-LLM

comparison addresses is whether MIPS complements LLMs by being able to solve some tasks

where an LLM fails.

4.4.2 Evaluation

For both our method and GPT-4 Turbo, a task is considered solved if and only if a Python program

is produced that solves the task with 100% accuracy. GPT-4 Turbo is prompted using the “chain-of-

thought” approach described below and illustrated in Figure 4.5.

For a given task, the LLM receives two lists of length 10 sourced from the respective RNN

training set. The model is instructed to generate a formula that transforms the elements of list “x"

(features) into the elements of list ‘y’ (labels). Subsequently, the model is instructed to translate this

formula into Python code. The model is specifically asked to use elements of the aforementioned

lists as a test case and print “Success" or “Failure" if the generated function achieves full accuracy

on the test case. An external program extracts a fenced markdown codeblock from the output, which

is saved to a separate file and executed to determine if it successfully completes the task. To improve

the chance of success, this GPT-4 Turbo prompting process is repeated three times, requiring only

at least one of them to succeed. We run GPT using default temperature settings.

96



Table 4.1: Benchmark results. For tasks with note “see text”, please refer to Appendix 4.E

Task
#

Input
Strings

Element
Type

Task Description Task Name Solved by
GPT-4?

Solved by
MIPS?

1 2 bit Binary addition of two bit strings Binary_Addition 0 1
2 2 int Ternary addition of two digit strings Base_3_Addition 0 0
3 2 int Base 4 addition of two digit strings Base_4_Addition 0 0
4 2 int Base 5 addition of two digit strings Base_5_Addition 0 0
5 2 int Base 6 addition of two digit strings Base_6_Addition 1 0
6 2 int Base 7 addition of two digit strings Base_7_Addition 0 0
7 2 bit Bitwise XOR Bitwise_Xor 1 1
8 2 bit Bitwise OR Bitwise_Or 1 1
9 2 bit Bitwise AND Bitwise_And 1 1
10 1 bit Bitwise NOT Bitwise_Not 1 1
11 1 bit Parity of last 2 bits Parity_Last2 1 1
12 1 bit Parity of last 3 bits Parity_Last3 0 1
13 1 bit Parity of last 4 bits Parity_Last4 0 0
14 1 bit Parity of all bits seen so far Parity_All 0 1
15 1 bit Parity of number of zeros seen so far Parity_Zeros 0 1
16 1 int Cumulative number of even numbers Evens_Counter 0 0
17 1 int Cumulative sum Sum_All 1 1
18 1 int Sum of last 2 numbers Sum_Last2 0 1
19 1 int Sum of last 3 numbers Sum_Last3 0 1
20 1 int Sum of last 4 numbers Sum_Last4 1 1
21 1 int Sum of last 5 numbers Sum_Last5 1 1
22 1 int sum of last 6 numbers Sum_Last6 1 1
23 1 int Sum of last 7 numbers Sum_Last7 1 1
24 1 int Current number Current_Number 1 1
25 1 int Number 1 step back Prev1 1 1
26 1 int Number 2 steps back Prev2 1 1
27 1 int Number 3 steps back Prev3 1 1
28 1 int Number 4 steps back Prev4 1 1
29 1 int Number 5 steps back Prev5 1 1
30 1 int 1 if last two numbers are equal Previous_Equals_Current 0 1
31 1 int current − previous Diff_Last2 0 1
32 1 int |current − previous| Abs_Diff 0 1
33 1 int |current| Abs_Current 1 1
34 1 int |current| − |previous| Diff_Abs_Values 1 0
35 1 int Minimum of numbers seen so far Min_Seen 1 0
36 1 int Maximum of integers seen so far Max_Seen 1 0
37 1 int integer in 0-1 with highest frequency Majority_0_1 1 0
38 1 int Integer in 0-2 with highest frequency Majority_0_2 0 0
39 1 int Integer in 0-3 with highest frequency Majority_0_3 0 0
40 1 int 1 if even, otherwise 0 Evens_Detector 1 0
41 1 int 1 if perfect square, otherwise 0 Perfect_Square_Detector 0 0
42 1 bit 1 if bit string seen so far is a palindrome Bit_Palindrome 1 0
43 1 bit 1 if parentheses balanced so far, else 0 Balanced_Parenthesis 0 0
44 1 bit Number of bits seen so far mod 2 Parity_Bits_Mod2 1 0
45 1 bit 1 if last 3 bits alternate Alternating_Last3 0 0
46 1 bit 1 if last 4 bits alternate Alternating_Last4 1 0
47 1 bit bit shift to right (same as prev1) Bit_Shift_Right 1 1
48 2 bit Cumulative dot product of bits mod 2 Bit_Dot_Prod_Mod2 0 1
49 1 bit Binary division by 3 (see text) Div_3 1 0
50 1 bit Binary division by 5 (see text) Div_5 0 0
51 1 bit Binary division by 7 (see text) Div_7 0 0
52 1 int Cumulative addition modulo 3 Add_Mod_3 1 1
53 1 int Cumulative addition modulo 4 Add_Mod_4 0 0
54 1 int Cumulative addition modulo 5 Add_Mod_5 0 0
55 1 int Cumulative addition modulo 6 Add_Mod_6 0 0
56 1 int Cumulative addition modulo 7 Add_Mod_7 0 0
57 1 int Cumulative addition modulo 8 Add_Mod_8 0 0
58 1 int 1D dithering, 4-bit to 1-bit (see text) Dithering 1 0
59 1 int Newton’s of - freebody (integer input) Newton_Freebody 0 1
60 1 int Newton’s law of gravity (see text) Newton_Gravity 0 1
61 1 int Newton’s law w. spring (see text) Newton_Spring 0 1
62 2 int Newton’s law w. magnetic field (see text) Newton_Magnetic 0 0

Total solved 30 32
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4.4.3 Performance

As seen in Table 1, MIPS is highly complementary to GPT-4 Turbo: MIPS solves 32 of our tasks,

including 13 that are not solved by ChatGPT-4 (which solves 30).

The AutoML process of Section 4.3.1 discovers networks of varying task-dependent shape and

size. Table 4.2 shows the parameters p discovered for each task. Across our 62 tasks, 16 tasks could

be solved by a network with hidden dimension n = 1, and the largest n required was 81. For many

tasks, there was an interpretable meaning to the shape of the smallest network we discovered. For

instance, on tasks where the output is the element occurring k steps earlier in the list, we found

n = k + 1, since the current element and the previous k elements must be stored for later recall.

We found two main failure modes for MIPS:

1. Noise and non-linearity. The latent space is still close to being a finite state machine, but the

non-linearity and/or noise present in an RNN is so dominant that the integer autoencoder fails,

e.g., for Diff_Abs_Values. Humans can stare at the lookup table and regress the symbolic

function with their brains, but since the lookup table is not perfect, i.e., has the wrong integer

in a few examples, MIPS fails to symbolically regress the function. This can probably be

mitigated by learning and generalizing from a training subset with a smaller dynamic range.

2. Continuous computation. A key assumption of MIPS is that RNNs are finite-state ma-

chines. However, RNNs can also use continuous variables to represent information — the

Majority_0_X tasks fail for this reason. This can probably be mitigated by identifying and

implementing floating-point variables.

Figure 4.3 shows an example of a MIPS rediscovering the "ripple-carry adder" algorithm. The

normalizers significantly simplified some of the resulting programs, as illustrated in Fig. 4.4, and

sometimes made the difference between MIPS failing and succeeding. We found that applying

a small L1 weight regularization sometimes facilitated integer autoencoding by axis-aligning the

lattice.
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1

2 def f(s,t):
3 a = 0;b = 0;
4 ys = []
5 for i in range(10):
6 c = s[i]; d = t[i];
7 next_a = b ^ c ^ d
8 next_b = b+c+d>1
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Figure 4.3: The generated program for the addition of two binary numbers represented as bit
sequences. Note that MIPS rediscovers the “ripple adder", where the variable b above is the carry
bit.

4.5 Conclusions

We have presented MIPS, a novel method for program synthesis based on automated mechanistic

interpretability of neural networks trained to perform the desired task, auto-distilling the learned

algorithm into Python code. Its essence is to first train a recurrent neural network to learn a clever

finite state machine that performs the task, and then automatically figure out how this machine

works.

4.5.1 Findings

We found MIPS highly complementary to LLM-based program synthesis with GPT-4 Turbo, with

each approach solving many tasks that stumped the other. Whereas LLM-based methods have

the advantage of drawing upon a vast corpus of human training data, MIPS has the advantage of

discovering algorithms from scratch without human hints, with the potential to discover entirely

new algorithms. As opposed to genetic programming approaches, MIPS leverages the power of

deep learning by exploiting gradient information.

Program synthesis aside, our results shed further light on mechanistic interpretability, specifically

on how neural networks represent bits and integers. We found that n integers tend to get encoded
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1 def f(s):
2 a = 198;b = -11;c = -3;d = 483;e = 0;
3 ys = []
4 for i in range(20):
5 x = s[i]
6 next_a = -b+c+190
7 next_b = b-c-d-e+x+480
8 next_c = b-e+8
9 next_d = -b+e-x+472

10 next_e = a+b-e-187
11 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
12 y = -d+483
13 ys.append(y)
14 return ys

1 def f(s):
2 a = 0;b = 0;c = 0;d = 0;e = 0;
3 ys = []
4 for i in range(20):
5 x = s[i]
6 next_a = +x
7 next_b = a
8 next_c = b
9 next_d = c

10 next_e = d
11 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
12 y = a+b+c+d+e
13 ys.append(y)
14 return ys

Figure 4.4: Comparison of code generated from an RNN trained on Sum_Last5, without (top) and
with (bottom) normalizers. The whitening normalizer provided numerical stability to the Jordan
normal form normalizer, which itself simplified the recurrent portion of the program. The Toeplitz
and de-biasing normalizers jointly sparsified the occurrences of x in the program, and the number
of terms required to compute y. The quantization normalizer enabled all variables to be represented
as integers.
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Conversation Start

User: "Each
row in the
table below
contains two

lists...give me a
formula for ..."

GPT: [Response]

User: "Please
write a Python
program to ..."

GPT: [Response]

Extracted Code Block

Success or Failure?

Success Failure

Figure 4.5: We compare MIPS against program synthesis with the large language model GPT-4
Turbo, prompted with a “chain-of-thought" approach. It begins with the user providing a task,
followed by the model’s response, and culminates in assessing the success or failure of the generated
Python code based on its accuracy in processing the provided lists.
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linearly in n dimensions, but generically in non-orthogonal directions with an additive offset. This is

presumably because there are many more such messy encodings than simple ones, and the messiness

can be easily (linearly) decoded. We saw that n bits sometimes get encoded as an n-dimensional

parallelogram, but not always ––– possibly because linear decodability is less helpful when the

subsequent bit operations to be performed are nonlinear anyway.

4.5.2 Outlook

Our work is merely a modest first attempt at mechanistic-interpretability-based program synthesis,

and there are many obvious generalizations worth trying in future work. For example:

1. Improvements in training and integer autoencoding (since many of our failed examples failed

only just barely)

2. Generalization from RNNs to other architectures such as transformers

3. Generalization from bits and integers to more general extractable data types such as floating-

point numbers and various discrete mathematical structures and knowledge representations

4. Scaling to tasks requiring much larger neural networks

5. Automated formal verification of synthesized programs (we perform such verification with

Dafny in Section 4.F.1 to show that our MIPS-learned ripple adder correctly adds any binary

numbers, not merely those in the test set, but such manual work should ideally be fully

automated)

LLM-based coding co-pilots are already highly useful for program synthesis tasks based on

verbal problem descriptions or auto-complete, and will only get better. MIPS instead tackles

program synthesis based on test cases alone. This makes it analogous to symbolic regression

(Udrescu et al. 2020; Cranmer 2023), which has already proven useful for various science and

engineering applications (Cranmer et al. 2020; Ma et al. 2022) where one wishes to approximate

data relationships with symbolic formulae. The MIPS framework generalizes symbolic regression
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from feed-forward formulae to programs with loops, which are in principle Turing complete. If

this approach can be scaled up, it may enable promising opportunities for making machine-learned

algorithms more interpretable, verifiable, and trustworthy.

Broader Impact

Because machine-learned algorithms now outperform traditional human-discovered algorithms on

many tasks, there are incentives to deploy them even without a full understanding of how they

work and of whether they are biased, unsafe, or otherwise problematic. The aspirational broader

impact motivating this paper is to help automate the process of making AI systems more transparent,

robust, and trustworthy, with the ultimate goal of developing provably safe AI systems (Tegmark

and Omohundro 2023).
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4.A Lattice finding using generalized greatest common divisor

(GCD)

Our method often encounters cases where hidden states secretly form an affine transformation of an

integer lattice. However, not all lattice points are observed in training samples, so our goal is to

recover the hidden integer lattice from sparse observations.

4.A.1 Problem formulation

Suppose we have a set of lattice points in RD spanned by D independent basis vectors, bi (i =

1, 2, · · · , D). Each lattice point j has the position

xj =
D∑
i=1

ajibi + c, (4.5)

where c is a global translation vector, and the coefficients aji are integers

Our problem: given N such data points (x1,x2, · · · ,xN), how can we recover the integer

coefficients aji for each point data point as well as bi and c?

Note that even when the whole lattice is given, there are still degrees of freedom for the solution.

For example, {c 7→ c+ bi, aji 7→ aji − 1} remains a solution, and {bi →
∑D

j=1 Λijbj} remains a

solution if Λ is an integer matrix whose determinant is ±1. So our success criterion is: (1) aji are

integers; (2) the discovered bases and the true bases have the same determinant (the volume of a

unit cell). Once a set of bases is found, we can simplify them by minimizing their total norms over

valid transformations (Λ ∈ ZD×D, det(Λ) = ±1).

4.A.2 Regular GCD

As a reminder, given a list of n numbers {y1, y2, · · · , yn}, a common divisor d is a number such that

for all i, yi
d

is an integer. All common divisors are the set {d|yi/d ∈ Z, and the greatest common
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divisor (GCD) is the largest number in this set. Because

GCD(y1, · · · , yn) = GCD(y1,GCD(y2,GCD(y3, ...))), (4.6)

it without loss of generality suffices to consider the case n = 2. A common algorithm to compute

GCD of two number is the so-called Euclidean algorithm. We start with two numbers r0, r1 and

r0 > r1, which is step 0. For the kth step, we perform division-with-remainder to find the quotient qk

and the remainder rk so that rk−2 = qkrk−1 + rk with |rk−1| > |rk| 1. The algorithm will eventually

produce a zero remainder rN = 0, and the other non-zero remainder rN−1 is the greatest common

divisor. For example, GCD(55, 45) = 5, because

55 = 1× 45 + 10,

45 = 4× 10 + 5, (4.7)

10 = 2× 5 + 0.

4.A.3 Generalized GCD in D dimensions

Given a list of n vectors {y1,y2, · · · ,yn} where yi ∈ RD, and assuming that these vectors are in

the lattice described by Eq. (4.5), we can without loss of generality set c = 0, since we can always

redefine the origin. In D dimensions, the primitive of interest is the D-dimensional parallelogram:

a line segment for D = 1 (one basis vector), a parallelogram for D = 2 (two basis vectors),

parallelepiped for D = 3 (three basis vectors), etc.

One can construct a D-dimensional parallelogram by constructing its basis vectors as a linear

integer combination of yj , i.e.,

qi =
n∑

j=1

mijyj,mij ∈ Z, i = 1, 2, · · · , D. (4.8)

1We are considering a general case where r0 and r1 may be negative. Otherwise rk can always be positive numbers,
hence no need to use the absolute function.
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The goal of D-dimensional GCD is to find a “minimal” parallelogram, such that its volume (which

is det(q1,q2, · · · ,qD)) is GCD of volumes of other possible parallelograms. Once the minimal

parallelogram is found 2, we can also determine bi in Eq. (4.5), since bi are exactly qi! To find

the minimal parallelogram, we need two steps: (1) figure out the unit volume; (2) figure out

qi(i = 1, 2, · · · ) whose volume is the unit volume.

Step 1: Compute unit volume V0. We first define representative parallelograms as one where

all i = 1, 2, · · · , D, mi ≡ (mi1,mi2, · · · ,miD) are one-hot vectors, i.e., with only one element

being 1 and 0 otherwise. It is easy to show that the volume of any parallelogram is a linear integer

combination of volumes of representative parallelograms, so WLOG we can focus on representative

parallelograms. We compute the volumes of all representative parallelograms, which gives a volume

array. Since volumes are just scalars, we can get the unit volume V0 by calling the regular GCD of

the volume array.

Step 2: Find a minimal parallelogram (whose volume is the unit volume computed in step

1). Recall that in regular GCD, we are dealing with two numbers (scalars). To leverage this in the

vector case, we need to create scalars out of vectors, and make sure that the vectors share the same

linear structure as the scalars so that we can extend division-and-remainder to vectors. A natural

scalar is volume. Now consider two parallelograms P1 and P2, which share D − 1 basis vectors

(y3, . . . ,yD+1), but last basis vector is different: y1 for P1 and y2 for P2. Denote their volume as

V1 and V2:

V1 = det(y1,y3,y4, . . . ,yD)

V2 = det(y2,y3,y4, . . . ,yD)

(4.9)

Since

aV1 + bV2 = det(ay1 + by2,y3,y4, . . . ,yD), (4.10)

which shows that (V1, V2) and (y1,y2) share the same linear structure. We can simply apply

2There could be many minimal parallelograms, but finding one is sufficient.
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Figure 4.6: Both red and blue basis form a minimal parallelogram (in terms of cell volume), but one
can further simplify red to blue by linear combination (simplicity in the sense of small ℓ2 norm).

division-and-remainder to V1 and V2 as in regular GCD:

V ′
1 , V

′
2 = GCD(V1, V2), (4.11)

whose quotients in all iterations are saved and transferred to y1 and y2:

y′
1,y

′
2 = GCD_with_predefined_quotients(y1,y2). (4.12)

If V1 = V0 (which is the condition for minimal parallelogram), the algorithm terminates and returns

(y′
1,y3,y4, · · · ,yD). If V1 > V0, we need to repeat step 2 with the new vector list {y′

1,y3, · · · ,yN}.

Why can we remove y′
2 for next iteration? Note that although eventually V ′

1 > 0 and V ′
2 = 0,

typically y2 ̸= 0. However, since

0 = V ′
2 = det(y′

2,y3,y4, · · · ,yD), (4.13)

this means y′
2 is a linear combination of (y3, · · · ,yD), hence can be removed from the vector list.

Step 3: Simplification of basis vectors. We want to further simplify basis vectors. For example,

the basis vectors obtained in step 2 may have large norms. For example D = 2, the standard integer

lattice has b1 = (1, 0) and b2 = (0, 1), but they are infinitely many possibilities after step 2, as long

as pt− sq = ±1 for b1 = (p, q) and b2 = (s, t), e.g., b1 = (3, 5) and b2 = (4, 7).

To minimize ℓ2 norms, we choose a basis and project-and-subtract for other bases. Note that:
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(1) again we are only allowed to subtract integer times of the chosen basis; (2) the volume of the

parallelogram does not change since the project-and-subtract matrix has determinant 1 (suppose

bi(i = 2, 3, · · · , D) are projected to b1 and subtracted by multiples of b1. p∗ represents projection

integers):



1 p2→1 p3→1 · · · pD→1

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

0 0 0 · · · 1


(4.14)

We do this iteratively, until no norm can become shorter via project-and-subtract. Please see

Figure 4.6 for an illustration of how simplification works for a 2D example.

Computation overhead is actually surprisingly small. In typical cases, we only need to call

O(1) times of GCD.

Dealing with noise Usually the integer lattice in the hidden space is not perfect, i.e., vulnerable

to noise. How do we extract integer lattices in a robust way in the presence of noise? Note

that the terminating condition for the GCD algorithm is when the remainder is exactly zero - we

relax this condition to that the absolute value of the remainder to be smaller than a threshold

ϵgcd. Another issue regarding noise is that noise can be accumulated in the GCD iterations, so we

hope that GCD can converge in a few steps. To achieve this, we select hidden states in a small

region with data fraction p% of the whole data. Since both ϵgcd and p depends on data and neural

network training which we do not know a priori, we choose to grid sweep ϵgcd ∈ [10−3, 1] and

p ∈ (0.1, 100); for each (ϵgcd, p), we obtain an integer lattice and compute its description length.

We select the (ϵgcd, p) which gives the lattice with the smallest description length. The description

length includes two parts: integer descriptions of hidden states log(1 + |Z|2), and residual of

reconstruction log(1 + (AZ+b−X
ϵdl

)2) with ϵdl = 10−4.
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4.B Linear lattice finder

Although our RNN can represent general nonlinear functions, in the special case when the RNN

actually performs linear functions, program synthesis can be much easier. So if the hidden MLP

is linear, we would expect the hidden states to be an integer lattice, because inputs are integer

lattices and the mappings are linear. Effectively the hidden MLP works as a linear function:

h(t) = Whh
(t−1)+Wix

(t) (we neglected the bias term since it is not relevant to finding basis vectors

of a lattice).

Suppose we have input series x(1),x(2), ...,x(t), then h(t) is

h(t) =
t∑

j=1

W t−j
h Wixj, (4.15)

Since xj themselves are integer lattices, we could then interpret the following as basis vectors:

W t−j
h Wi, j = 1, 2, · · · , t, (4.16)

which are not necessarily independent. For example, for the task of summing up the last two

numbers, WhWi and Wi are non-zero vectors and are independent, while others W n
hWi ≈ 0, n ≥ 2.

Then WhWi and Wi are the two basis vectors for the lattice. In general, we measure the norm of

all the candidate basis vectors, and select the first k vectors with highest norms, which are exactly

basis vectors of the hidden lattice.

4.C Symbolic regression

The formulation of symbolic regression is that one has data pair (xi, yi), i = 1, 2, . . . , N with N

data samples. The goal is to find a symbolic formula f such that yi = f(xi). A function is expressed

in reverse polish notation (RPN), for example, |a| − c is expressed as aAc- where A stands for the

absolute value function. We have three types of variables:
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• type-0 operator. We include input variables and constants.

• type-1 operator (takes in one type-0 to produce one type-0). We include operations {>,<

,∼, H,D,A}. > means +1; < means −1; ∼ means negating the number; D is dirac delta

which outputs 1 only when taking in 0; A is the absolute value function;

• type-2 operator (takes in two type-0 to produce on type-0). We include operations {+, ∗,−,%}.

+ means addition of two numbers; ∗ means multiplication of two numbers; − means subtrac-

tion of two numbers; % is the remainder of one number module the other.

There are only certain types of templates (a string of numbers consisting of 0,1,2) that are syntacti-

cally correct. For example, 002 is correct while 02 is incorrect. We iterate over all the templates not

longer than 6 symbols, and for each template, we try all the variable combinations. Each variable

combination corresponds to a symbolic equation f , for which we can check whether f(xi) = yi for

100 data points. If success, we terminate the brute force program and return the successful formula.

If brute force search does not find any correct symbolic formula within compute budget, we will

simply return the formula a, to make sure that the program can still be synthesized but simply fail

to make correct predictions.

4.D Neural Network Normalization Algorithms

It is well known that neural networks exhibit a large amount of symmetry. That is, there are many

transformations that can be applied to networks without affecting the map y = f(x) that they

compute. A classic example is to permute the neurons within layers.

In this section, we describe a suite of normalizers that we use to transform our networks into

a standard form, such that the algorithms that they learn are easier to interpret. We call our five

normalizers “Whitening”, “Jordan normal form (JNF)”, “Toeplitz”, “De-bias”, and “Quantization”.

The main symmetry which we focus on is a linear transformation of the hidden space h 7→ Ah,
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which requires the following changes to f and g:

f(h,x) = Wh+Vx+ b =⇒ f(h,x) = AWA−1h+AVx+Ab

g(h) = G(Uh+ c) =⇒ f(h) = G(UA−1h+ c)

and is implemented by changing the weights:

W =⇒ AWA−1

V =⇒ AV

b =⇒ Ab

U =⇒ UA−1

For this symmetry, we can apply an arbitrary invertible similarity transformation A to W,

which is the core idea underlying our normalizers, three of which have their own unique ways of

constructing A, as we describe in the sections below. Most importantly, one of our normalizers

exploits A to convert the hidden-to-hidden transformation W into Jordan normal form, in the case

where f is linear. Recent work has shown that large recurrent networks with linear hidden-to-

hidden transformations, such as state space models (Gu and Dao 2023) can perform just as well as

transformer-based models in language modeling on a large scale. A main advantage of using linear

hidden-to-hidden transformations is the possibility of expressing the hidden space in it’s eigenbasis.

This causes the hidden-to-hidden transformation to become diagonal, so that it can be computed

more efficiently. In practice, modern state space models assume diagonality, and go further to

assume the elements on the diagonal are real; they fix the architecture to be this way during training.

By doing this, we ignore the possibility of linear hidden-to-hidden transformations that cannot

be transformed into a real diagonal matrix via diagonalization. Such examples include rotation

matrices (whose eigenvalues may be complex), and shift matrices (whose eigenvalues are degenerate

and whose eigenvectors are duplicated). A more general form than the diagonal form is the Jordan
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normal form, which consists of Jordan blocks along the diagonal, each of which has the form λI+S

for an eigenvalue λ and the shift matrix S with ones on the superdiagonal and zeros elsewhere.

The diagonalization is a special case of Jordan normal form, and all matrices can be transformed

to Jordan normal form. A simple transformation can also be applied to Jordan normal forms that

contain pairs of complex generalized eigenvectors, to convert them into real matrices.

For nonlinear hidden-to-hidden transformations, we compute W as though the nonlinearities

have been removed.

4.D.1 Whitening Transformation

Similar to normalizing the means and variances of a dataset before feeding it into a machine learning

model, a good first preprocessing step is to normalize the distribution of hidden states. We therefore

choose to apply a whitening transformation to the hidden space. To compute the transformation, we

compute the covariance matrix of hidden activations across the dataset, and use the singular value

decomposition (SVD) of this covariance matrix to find the closest transformation to the identity that

will bring this covariance matrix to the identity. We ignore any directions with covariance less than

ϵ = 0.1, which cause more instability when normalized. We then post-apply this transformation to

the last linear layer of the hidden-to-hidden transformation and its biases, and pre-apply its inverse

to the first layers of the hidden-to-hidden and hidden-to-output transformations. This leaves the

net behavior of the network unchanged. Other transformations which we use in other normalizers

operate in a similar manner, by post-applying and pre-applying a transformation and its inverse

transformation to the first and last layers that interact with the hidden space.

4.D.2 Jordan Normal Form Transformation

Critically, the hidden-to-hidden transformations which we would like to convert into Jordan normal

form are imperfect because they are learned. Eigenvectors belonging to each Jordan block must be

identical, whereas this will only be approximately true of the learned transformation.
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The Jordan normal form of a matrix is unstable; consider a matrix

W =

0 1

δ 0


which, when δ ̸= 0, can be transformed into Jordan normal form by:

0 1

δ 0

 =

 1 1
√
δ −

√
δ


︸ ︷︷ ︸

T

√
δ 0

0 −
√
δ


 1 1
√
δ −

√
δ


−1

(4.17)

but when δ = 0, is transformed into Jordan normal form by:

0 1

0 0

 =

1 0

0 1


︸ ︷︷ ︸

T

0 1

0 0


1 0

0 1


−1

(4.18)

As we can see, all of the matrices in the decomposition are unstable near δ = 0, so the issue of error

thresholding is not only numerical, but is mathematical in nature as well.

We would like to construct an algorithm which computes the Jordan normal form with an error

threshold |δ| < ϵ = 0.7 within which the algorithm will pick the transformation T from Equation

(4.18) instead of from Equation (4.17).

Our algorithm first computes the eigenvalues λi, and then iteratively solves for the generalized

eigenvectors which lie in ker((W − λI)k) for increasing k. The approximation occurs whenever

we compute the kernel (of unknown dimension) of a matrix X; we take the SVD of X and treat

any singular vectors as part of the nullspace if their singular values are lower than the threshold ϵ,

calling the result ϵ-ker(X).

Spaces are always stored in the form of a rectangular matrix F of orthonormal vectors, and

their dimension is always the width of the matrix. We build projections using proj(F) = FFH ,

where FH denotes the conjugate transpose of F. We compute kernels ker(X) of known dimension
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of matrices X by taking the SVD X = V1SV
H
2 and taking the last singular vectors in VH

2 . We

compute column spaces of projectors of known dimension by taking the top singular vectors of the

SVD.

The steps in our algorithm are as follows:

1. Solve for the eigenvalues λi of W, and check that eigenvalues that are within ϵ of each other

form groups, ie. that |λi − λj| ≤ ϵ and |λj − λk| ≤ ϵ always implies |λk − λi| ≤ ϵ. Compute

the mean eigenvalue for every group.

2. Solve for the approximate kernels of W − λI for each mean eigenvalue λ. We will denote

this operation by ϵ-ker(W − λI). We represent these kernels by storing the singular vectors

whose singular values are lower than ϵ. Also, construct a “corrected matrix” of W − λI for

every λ by taking the SVD, discarding the low singular values, and multiplying the pruned

decomposition back together again.

3. Solve for successive spaces Fk of generalized eigenvectors at increasing depths k along the

set of Jordan chains with eigenvalue λ, for all λ. In other words, find chains of mutually

orthogonal vectors which are mapped to zero after exactly k applications of the map W− λI.

We first solve for F0 = ker(W − λI). Then for k > 0, we first solve for Jk = ϵ-ker((I −

proj(Fk−1))(W − λI)) and deduce the number of chains which reach depth k from the

dimension of Jk, and then solve for Fk = col(proj(Jk)− proj(F0)).

4. Perform a consistency check to verify that the dimensions of Fk always stay the same or

decrease with k. Go through the spaces Fk in reverse order, and whenever the dimension

of Fk decreases, figure out which direction(s) are not mapped to by applying W − λI to

Fk+1. Do this by building a projector J from mapping vectors representing Fk+1 through

W − λI, and taking col(proj(Fk)− J). Solve for the Jordan chain by repeatedly applying

proj(Fi)(Wi − λI) for i starting from k − 1 and going all the way down to zero.

5. Concatenate all the Jordan chains together to form the transformation matrix T.
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The transformation T consists of generalized eigenvectors which need not be completely real

but may also include pairs of generalized eigenvectors that are complex conjugates of each other.

Since we do not want the weights of our normalized network to be complex, we also apply a unitary

transformation which changes any pair of complex generalized eigenvectors into a pair of real

vectors, and the resulting block of W into a multiple of a rotation matrix. As an example, for a real

2 by 2 matrix W with complex eigenvectors, we have

W = T

a+ bi 0

0 a− bi

T−1

= TT′

a −b

b a

 (TT′)−1, T′ =
1√
2

1 i

1 −i



4.D.3 Toeplitz Transformation

Once W is in Jordan normal form, each Jordan block is an upper triangular Toeplitz matrix.

Upper-triangular Toeplitz matrices, including Jordan blocks, will always commute with each other,

because they are all polynomials of the shift matrix (which has ones on the superdiagonal and zeros

elsewhere,) and therefore these transformations will leave W unchanged, but will still affect V. We

split V up into parts operated on by each Jordan block, and use these Toeplitz transformations to

reduce the most numerically stable columns of each block of V to one-hot vectors. The numerically

stability of a column vector is determined by the absolute value of the bottom element of that

column vector, since it’s inverse will become the degenerate eigenvalues of the resulting Toeplitz

matrix. If no column has a numerically stability above ϵ = 0.0001, we pick the identity matrix for

our Toeplitz transformation.
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4.D.4 De-biasing Transformation

Oftentimes, W is not full rank, and has a nontrivial nullspace. The bias b will have some component

in the direction of this nullspace, and eliminating this component only affects the behavior of the

output network g, and the perturabtion cannot carry on to the remainder of the sequence via f .

Therefore, we eliminate any such component, and compensate accordingly by modifying the bias in

the first affine layer of g. We identify the nullspaces by taking an SVD and identifying components

whose singular value is less than ϵ = 0.1.

4.D.5 Quantization Transformation

After applying all of the previous transformations to the RNN, it is common for many of the weights

to become close to zero or some other small integer. Treating this as a sign that the network is

attempting to implement discrete operations using integers, we snap any weights and biases that are

within a threshold ϵ = 0.01 of an integer, to that integer. For certain simple tasks, sometimes this

allows the entire network to become quantized.

4.E Supplementary training data details

Here we present additional details on the benchmark tasks marked "see text" in Table 4.1:

• Div_3/5/7: This is a long division task for binary numbers. The input is a binary number,

and the output is that binary number divided by 3, 5, or 7, respectively. The remainder is

discarded. For example, we have 1000011/11=0010110 (67/3=22). The most significant bits

occur first in the sequence.

• Dithering: This is a basic image color quantization task, for 1D images. We map 4-bit images

to 1-bit images such that the cumulative sum of pixel brightnesses of both the original and

dithered images remains as close as possible.
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• Newton_Gravity: This is an euler forward propagation technique which follows the equation

F = input − 1, v 7→ v + F, x 7→ x+ v.

• Newton_Spring: This is an euler forward propagation technique which follows the equation

F = input − x, v 7→ v + F, x 7→ x+ v.

• Newton_Magnetic: This is an euler forward propagation technique which follows the

equation Fx = input1 − vy, Fy = input2 + vx,v 7→ v + F,x 7→ x+ v.

4.F Generated programs

This section includes all successfully generated Python programs.
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Binary-Addition

1

2 def f(s,t):

3 a = 0;b = 0;

4 ys = []

5 for i in range(10):

6 c = s[i]; d = t[i];

7 next_a = b ^ c ^ d

8 next_b = b+c+d>1

9 a = next_a;b = next_b;

10 y = a

11 ys.append(y)

12 return ys

Bitwise-Xor

1

2 def f(s,t):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]; c = t[i];

7 next_a = b ^ c

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys

Bitwise-Or

1

2 def f(s,t):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]; c = t[i];

7 next_a = b+c>0

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys

Bitwise-And

1

2 def f(s,t):

3 a = 0;b = 1;

4 ys = []

5 for i in range(10):

6 c = s[i]; d = t[i];

7 next_a = (not a and not b and

c and d) or (not a and b and not c

and d) or (not a and b and c and

not d) or (not a and b and c and d

) or (a and not b and c and d) or

(a and b and c and d)

8 next_b = c+d==0 or c+d==2

9 a = next_a;b = next_b;

10 y = a+b>1

11 ys.append(y)

12 return ys
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Bitwise-Not

1

2 def f(s):

3 a = 1;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = x

8 a = next_a;

9 y = -a+1

10 ys.append(y)

11 return ys

Parity-Last2

1

2 def f(s):

3 a = 0;b = 0;

4 ys = []

5 for i in range(10):

6 c = s[i]

7 next_a = c

8 next_b = a ^ c

9 a = next_a;b = next_b;

10 y = b

11 ys.append(y)

12 return ys

Parity-Last3

1

2 def f(s):

3 a = 0;b = 0;c = 0;

4 ys = []

5 for i in range(10):

6 d = s[i]

7 next_a = d

8 next_b = c

9 next_c = a

10 a = next_a;b = next_b;c =

next_c;

11 y = a ^ b ^ c

12 ys.append(y)

13 return ys

Parity-All

1

2 def f(s):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]

7 next_a = a ^ b

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys
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Parity-Zeros

1

2 def f(s):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]

7 next_a = a+b==0 or a+b==2

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys

Sum-All

1

2 def f(s):

3 a = 884;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = a-x

8 a = next_a;

9 y = -a+884

10 ys.append(y)

11 return ys

Sum-Last2

1

2 def f(s):

3 a = 0;b = 99;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -b+x+99

8 next_b = -x+99

9 a = next_a;b = next_b;

10 y = a

11 ys.append(y)

12 return ys

Sum-Last3

1

2 def f(s):

3 a = 0;b = 198;c = 0;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = x

8 next_b = -a-x+198

9 next_c = -b+198

10 a = next_a;b = next_b;c =

next_c;

11 y = a+c

12 ys.append(y)

13 return ys
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Sum-Last4

1

2 def f(s):

3 a = 0;b = 99;c = 0;d = 99;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = c

8 next_b = -x+99

9 next_c = -b-d+198

10 next_d = b

11 a = next_a;b = next_b;c =

next_c;d = next_d;

12 y = a-b-d+198

13 ys.append(y)

14 return ys

Sum-Last5

1

2 def f(s):

3 a = 198;b = -10;c = -2;d = 482;e =

1;

4 ys = []

5 for i in range(20):

6 x = s[i]

7 next_a = -b+c+190

8 next_b = b-c-d-e+x+480

9 next_c = b-e+8

10 next_d = -b+e-x+472

11 next_e = a+b-e-187

12 a = next_a;b = next_b;c =

next_c;d = next_d;e = next_e;

13 y = -d+483

14 ys.append(y)

15 return ys
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Sum-Last6

1

2 def f(s):

3 a = 0;b = 295;c = 99;d = 0;e =

297;f = 99;

4 ys = []

5 for i in range(20):

6 x = s[i]

7 next_a = -b+295

8 next_b = b-c+f

9 next_c = b-c+d-97

10 next_d = -f+99

11 next_e = -a+297

12 next_f = -x+99

13 a = next_a;b = next_b;c =

next_c;d = next_d;e = next_e;f =

next_f;

14 y = -b+c-e-f+592

15 ys.append(y)

16 return ys

Sum-Last7

1

2 def f(s):

3 a = 297;b = 198;c = 0;d = 99;e =

0;f = -15;g = 0;

4 ys = []

5 for i in range(20):

6 x = s[i]

7 next_a = -a+d-f+g+480

8 next_b = a-d

9 next_c = d+e-99

10 next_d = -c+99

11 next_e = -b+198

12 next_f = -c+f+x

13 next_g = x

14 a = next_a;b = next_b;c =

next_c;d = next_d;e = next_e;f =

next_f;g = next_g;

15 y = -d+f+114

16 ys.append(y)

17 return ys
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Current-Number

1

2 def f(s):

3 a = 99;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -x+99

8 a = next_a;

9 y = -a+99

10 ys.append(y)

11 return ys

Prev1

1

2 def f(s):

3 a = 0;b = 99;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -b+99

8 next_b = -x+99

9 a = next_a;b = next_b;

10 y = a

11 ys.append(y)

12 return ys

Prev2

1

2 def f(s):

3 a = 99;b = 0;c = 0;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -x+99

8 next_b = -a+99

9 next_c = b

10 a = next_a;b = next_b;c =

next_c;

11 y = c

12 ys.append(y)

13 return ys

Prev3

1

2 def f(s):

3 a = 0;b = 0;c = 99;d = 99;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = b

8 next_b = -c+99

9 next_c = d

10 next_d = -x+99

11 a = next_a;b = next_b;c =

next_c;d = next_d;

12 y = a

13 ys.append(y)

14 return ys
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Prev4

1

2 def f(s):

3 a = 0;b = 99;c = 0;d = 99;e = 0;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = c

8 next_b = -a+99

9 next_c = -d+99

10 next_d = -e+99

11 next_e = x

12 a = next_a;b = next_b;c =

next_c;d = next_d;e = next_e;

13 y = -b+99

14 ys.append(y)

15 return ys

Prev5

1

2 def f(s):

3 a = 0;b = 0;c = 99;d = 99;e = 99;f

= 99;

4 ys = []

5 for i in range(20):

6 x = s[i]

7 next_a = -c+99

8 next_b = -d+99

9 next_c = -b+99

10 next_d = e

11 next_e = f

12 next_f = -x+99

13 a = next_a;b = next_b;c =

next_c;d = next_d;e = next_e;f =

next_f;

14 y = a

15 ys.append(y)

16 return ys
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Previous-Equals-Current

1

2 def f(s):

3 a = 0;b = 0;

4 ys = []

5 for i in range(10):

6 c = s[i]

7 next_a = delta(c-b)

8 next_b = c

9 a = next_a;b = next_b;

10 y = a

11 ys.append(y)

12 return ys

Diff-Last2

1

2 def f(s):

3 a = 199;b = 100;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -a-b+x+498

8 next_b = a+b-199

9 a = next_a;b = next_b;

10 y = a-199

11 ys.append(y)

12 return ys

Abs-Diff

1

2 def f(s):

3 a = 100;b = 100;

4 ys = []

5 for i in range(10):

6 c = s[i]

7 next_a = b

8 next_b = c+100

9 a = next_a;b = next_b;

10 y = abs(b-a)

11 ys.append(y)

12 return ys

Abs-Current

1

2 def f(s):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]

7 next_a = abs(b)

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys
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Bit-Shift-Right

1

2 def f(s):

3 a = 0;b = 1;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = -b+1

8 next_b = -x+1

9 a = next_a;b = next_b;

10 y = a

11 ys.append(y)

12 return ys

Bit-Dot-Prod-Mod2

1

2 def f(s,t):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]; c = t[i];

7 next_a = (not a and b and c)

or (a and not b and not c) or (a

and not b and c) or (a and b and

not c)

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys

Add-Mod-3

1

2 def f(s):

3 a = 0;

4 ys = []

5 for i in range(10):

6 b = s[i]

7 next_a = (b+a)%3

8 a = next_a;

9 y = a

10 ys.append(y)

11 return ys

Newton-Freebody

1

2 def f(s):

3 a = 82;b = 393;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = a-x

8 next_b = -a+b+82

9 a = next_a;b = next_b;

10 y = -a+b-311

11 ys.append(y)

12 return ys
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Newton-Gravity

1

2 def f(s):

3 a = 72;b = 513;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = a-x+1

8 next_b = -a+b+x+71

9 a = next_a;b = next_b;

10 y = b-513

11 ys.append(y)

12 return ys

Newton-Spring

1

2 def f(s):

3 a = 64;b = 57;

4 ys = []

5 for i in range(10):

6 x = s[i]

7 next_a = a+b-x-57

8 next_b = -a+121

9 a = next_a;b = next_b;

10 y = -a+64

11 ys.append(y)

12 return ys

4.F.1 Formal Verification

The Dafny programming language is designed so that programs can be formally verified for

correctness. The desired behavior of a program can be explicitly specified via preconditions,

postconditions, and invariants, which are verified via automated theorem proving. These capabilities

make Dafny useful in fields where correctness and safety are crucial.

We leverage Dafny’s robust verification capabilities to prove the correctness of the bit addition

Python program synthesized by MIPS. The bit addition Python program was first converted to

Dafny, then annotated with specific assertions, preconditions, and postconditions that defined the

expected behavior of the code. Each annotation in the code was then formally verified by Dafny,

ensuring that under all possible valid inputs, the code’s output would be consistent with the expected

behavior. On line 79, we show that the algorithm found by MIPS is indeed equivalent to performing

bit addition with length 10 bitvectors in Dafny.

Dafny-Code

1
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2 function ArrayToBv10(arr: array<bool>): bv10 // Converts boolean array to

bitvector

3 reads arr

4 requires arr.Length == 10

5 {

6 ArrayToBv10Helper(arr, arr.Length - 1)

7 }

8

9 function ArrayToBv10Helper(arr: array<bool>, index: nat): bv10

10 reads arr

11 requires arr.Length == 10

12 requires 0 <= index < arr.Length

13 decreases index

14 ensures forall i :: 0 <= i < index ==> ((ArrayToBv10Helper(arr, i) >> i) &

1) == (if arr[i] then 1 else 0)

15 {

16 if index == 0 then

17 (if arr[0] then 1 else 0) as bv10

18 else

19 var bit: bv10 := if arr[index] then 1 as bv10 else 0 as bv10;

20 (bit << index) + ArrayToBv10Helper(arr, index - 1)

21 }

22

23 method ArrayToSequence(arr: array<bool>) returns (res: seq<bool>) // Converts

boolean array to boolean sequence

24 ensures |res| == arr.Length

25 ensures forall k :: 0 <= k < arr.Length ==> res[k] == arr[k]

26 {

27 res := [];

28 var i := 0;

29 while i < arr.Length

30 invariant 0 <= i <= arr.Length

31 invariant |res| == i
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32 invariant forall k :: 0 <= k < i ==> res[k] == arr[k]

33 {

34 res := res + [arr[i]];

35 i := i + 1;

36 }

37 }

38

39 function isBitSet(x: bv10, bitIndex: nat): bool

40 requires bitIndex < 10

41 ensures isBitSet(x, bitIndex) <==> (x & (1 << bitIndex)) != 0

42 {

43 (x & (1 << bitIndex)) != 0

44 }

45

46 function Bv10ToSeq(x: bv10): seq<bool> // Converts bitvector to boolean

sequence

47 ensures |Bv10ToSeq(x)| == 10

48 ensures forall i: nat :: 0 <= i < 10 ==> Bv10ToSeq(x)[i] == isBitSet(x, i)

49 {

50 [isBitSet(x, 0), isBitSet(x, 1), isBitSet(x, 2), isBitSet(x, 3),

51 isBitSet(x, 4), isBitSet(x, 5), isBitSet(x, 6), isBitSet(x, 7),

52 isBitSet(x, 8), isBitSet(x, 9)]

53 }

54

55 function BoolToInt(a: bool): int {

56 if a then 1 else 0

57 }

58

59 function XOR(a: bool, b: bool): bool {

60 (a || b) && !(a && b)

61 }

62

63 function BitAddition(s: array<bool>, t: array<bool>): seq<bool> // Performs
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traditional bit addition

64 reads s

65 reads t

66 requires s.Length == 10 && t.Length == 10

67 {

68 var a: bv10 := ArrayToBv10(s);

69 var b: bv10 := ArrayToBv10(t);

70 var c: bv10 := a + b;

71

72 Bv10ToSeq(c)

73 }

74

75 method f(s: array<bool>, t: array<bool>) returns (sresult: seq<bool>) //

Generated program for bit addition

76 requires s.Length == 10 && t.Length == 10

77 ensures |sresult| == 10

78 ensures forall i :: 0 <= i && i < |sresult| ==> sresult[i] == ((s[i] != t[i

]) != (i > 0 && ((s[i-1] || t[i-1]) && !(sresult[i-1] && (s[i-1] != t[i

-1])))))

79 ensures BitAddition(s, t) == sresult // Verification of correctness

80 {

81 var a: bool := false;

82 var b: bool := false;

83 var result: array<bool> := new bool[10];

84 var i: int := 0;

85

86 while i < result.Length

87 invariant 0 <= i <= result.Length

88 invariant forall j :: 0 <= j < i ==> result[j] == false

89 {

90 result[i] := false;

91 i := i + 1;

92 }
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93

94 i := 0;

95

96 assert forall j :: 0 <= j < result.Length ==> result[j] == false;

97

98 while i < result.Length

99 invariant 0 <= i <= result.Length

100 invariant b == (i > 0 && ((s[i-1] || t[i-1]) && !(result[i-1] && (s[i-1]

!= t[i-1]))))

101 invariant forall j :: 0 <= j < i ==> result[j] == ((s[j] != t[j]) != (j >

0 && ((s[j-1] || t[j-1]) && !(result[j-1] && (s[j-1] != t[j-1])))))

102 {

103 assert b == (i > 0 && ((s[i-1] || t[i-1]) && !(result[i-1] && (s[i-1] != t

[i-1]))));

104

105 result[i] := XOR(b, XOR(s[i], t[i]));

106 b := BoolToInt(b) + BoolToInt(s[i]) + BoolToInt(t[i]) > 1;

107 assert b == ((s[i] || t[i]) && !(result[i] && (s[i] != t[i])));

108

109 i := i + 1;

110 }

111

112 sresult := ArrayToSequence(result);

113 }
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Table 4.2: AutoML architecture search results. All networks achieved 100% accuracy on at least
one test batch.

Task # Task Name n wf df wg dg Train Loss Test Loss

1 Binary_Addition 2 1 1 4 2 0 0
2 Base_3_Addition 2 1 1 5 2 0 0
3 Base_4_Addition 2 1 1 5 2 0 0
4 Base_5_Addition 2 1 1 5 2 0 0
5 Base_6_Addition 2 1 1 6 2 2.45e-09 2.53e-09
6 Base_7_Addition 2 1 1 10 2 2.32e-06 2.31e-06
7 Bitwise_Xor 1 1 1 2 2 0 0
8 Bitwise_Or 1 1 1 1 1 3.03e-02 3.03e-02
9 Bitwise_And 1 1 1 1 1 3.03e-02 3.03e-02
10 Bitwise_Not 1 1 1 1 1 0 0
11 Parity_Last2 1 1 1 229 2 1.68e-02 1.69e-02
12 Parity_Last3 2 1 1 5 2 1.62e-04 1.64e-04
13 Parity_Last4 3 1 1 29 2 3.07e-07 2.99e-07
14 Parity_All 1 1 1 2 2 0 0
15 Parity_Zeros 1 1 1 2 2 0 0
16 Evens_Counter 4 1 1 73 3 8.89e-05 8.88e-05
17 Sum_All 1 1 1 1 1 6.09e-08 6.13e-08
18 Sum_Last2 2 1 1 1 1 0 0
19 Sum_Last3 3 1 1 1 1 6.34e-07 6.35e-07
20 Sum_Last4 4 1 1 1 1 2.10e-04 2.11e-04
21 Sum_Last5 5 1 1 1 1 8.86e-03 8.87e-03
22 Sum_Last6 6 1 1 1 1 1.82e-02 1.81e-02
23 Sum_Last7 7 1 1 1 1 3.03e-02 3.01e-02
24 Current_Number 1 1 1 1 1 0 0
25 Prev1 2 1 1 1 1 0 0
26 Prev2 3 1 1 1 1 0 0
27 Prev3 4 1 1 1 1 0 0
28 Prev4 5 1 1 1 1 2.04e-07 2.05e-07
29 Prev5 6 1 1 1 1 6.00e-05 5.96e-05
30 Previous_Equals_Current 2 1 1 5 2 6.72e-05 6.61e-05
31 Diff_Last2 2 1 1 1 1 0 0
32 Abs_Diff 2 2 2 1 1 1.84e-07 1.84e-07
33 Abs_Current 1 1 1 2 2 4.51e-08 5.71e-08
34 Diff_Abs_Values 2 1 1 4 2 3.15e-06 2.96e-06
35 Min_Seen 1 1 1 2 2 0 0
36 Max_Seen 1 1 1 2 2 1.46e-12 0
37 Majority_0_1 1 1 1 63 2 4.03e-03 4.05e-03
38 Majority_0_2 4 1 1 98 2 1.64e-04 1.71e-04
39 Majority_0_3 21 1 1 132 3 6.94e-05 6.86e-05
40 Evens_Detector 5 1 1 163 2 8.18e-04 8.32e-04
41 Perfect_Square_Detector 48 1 1 100 2 1.92e-03 1.97e-03
42 Bit_Palindrome 18 1 1 86 2 3.81e-05 3.69e-05
43 Balanced_Parenthesis 1 1 1 16 2 7.44e-03 7.10e-03
44 Parity_Bits_Mod2 1 1 1 1 1 0 0
45 Alternating_Last3 2 1 1 3 2 1.85e-02 1.87e-02
46 Alternating_Last4 2 1 1 3 2 8.24e-06 8.09e-06
47 Bit_Shift_Right 2 1 1 1 1 0 0
48 Bit_Dot_Prod_Mod2 1 1 1 3 2 0 0
49 Div_3 2 1 1 59 2 6.40e-03 6.43e-03
50 Div_5 4 1 1 76 2 1.50e-04 1.55e-04
51 Div_7 4 1 1 103 2 6.65e-04 6.63e-04
52 Add_Mod_3 1 1 1 149 2 1.02e-03 1.04e-03
53 Add_Mod_4 2 1 1 33 2 1.53e-04 1.44e-04
54 Add_Mod_5 3 1 1 43 2 1.02e-03 1.03e-03
55 Add_Mod_6 4 1 1 108 2 6.14e-04 6.12e-04
56 Add_Mod_7 4 1 1 199 2 3.96e-04 4.07e-04
57 Add_Mod_8 67 1 1 134 2 8.53e-04 8.34e-04
58 Dithering 81 1 1 166 2 7.72e-04 7.75e-04
59 Newton_Freebody 2 1 1 1 1 2.61e-07 2.62e-07
60 Newton_Gravity 2 1 1 1 1 1.81e-07 1.87e-07
61 Newton_Spring 2 1 1 1 1 0 0
62 Newton_Magnetic 4 1 1 1 1 8.59e-05 8.60e-05
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Chapter 5

Conclusion

In this thesis, I have explored three ways that we can automate our efforts to interpret and understand

the internal functioning components of trained neural networks. The first technique from Chapter 2

detects irreducible multidimensional features; I presented a wealth of evidence that such multidimen-

sional features are indeed fundamental and are most accurately though of in this way. The second

technique from Chapter 3 trains generative models of neural networks with a simplicity regulariza-

tion, such that the simplicity of the generated model translates into general human-interpretable

structures. The third technique from Chapter 4 removes random symmetry transformations that

have been applied to learned networks, simplifying their weights without changing their behavior,

before converting these networks into short pieces of python code. These techniques will help us to

modify networks to induce predictable and reliable changes in their behavior. The scalability of

these techniques gestures towards the long-term goal of gaining fine-grained control over language

models that are too large for manual interpretation. We hope that our techniques encourage further

progress in advancing our ability to control neural networks, to make them safer to use, in situations

where their unpredictable behavior has the potential to do great harm.
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Appendix A

Notes on Jordan Normal Form

In Chapter 4, we make heavy use of the Jordan normal form (Brechenmacher 2006) in order to

simplify recurrent neural networks. To understand Jordan normal form, we must first discuss

diagonalization. When we diagonalize a square matrix W, we find a basis in which W represents

elementwise multiplication. If we write the basis vectors in a matrix A, this means we find a matrix

A such that the product

A−1WA = D

is a diagonal matrix; we say that it is W in “diagonal form”. We call the product

ADA−1 = W

the “eigendecomposition” of W. Not all square matrices can be diagonalized in this way; matrices

that cannot are called “defective”. Matrices become defective when their eigenvalues are duplicated

multiple times, more times than the associated eigenspace. An example is the matrix

W =

0 1

0 0


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which has two eigenvalues of zero, but maps the (0, 1)T vector to (1, 0)T and the (1, 0)T vector to

zero.

The Jordan normal form (JNF) is a generalization of the diagonal form, whose main purpose

here is to let us still talk about “two unique eigenvectors” even though there is only one. Converting

a matrix W into JNF is defined by finding a matrix A such that A−1WA is diagonal, except that it

can optionally have ones on the superdiagonal, whenever the two adjacent eigenvalues are the same.

All square matrices can be converted into JNF.

The JNF of a matrix is divided into “Jordan blocks”, each of which is a square matrix with

identical eigenvalues on the diagonal and ones on the superdiagonal. These Jordan blocks can

be written as λI + S, where S is the “shift matrix” with ones on the superdiagonal and zeros

elsewhere. The columns of the matrix A which converts W into JNF, are known as the “generalized

eigenvectors” of W. The generalized eigenvectors corresponding to each Jordan block of eigenvalue

λ can be called a “Jordan chain”, since they each map to the previous generalized eigenvector in the

chain under (W − λI), until the first generalized eigenvector maps to zero (Bronson 1991).
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