ISAAC LIAO

EDUCATION

Massachusetts Institute of Technology

Master of Engineering, Electrical Engineering and Computer Science

Massachusetts Institute of Technology GPA: 5.0/5.0

Bachelor of Science, Double major in Computer Science and Physics

Classes (*Graduate): Bayesian Modeling and Inference*, Statistical Learning Theory*, Information Theory*, Quantum Physics I-III, Computer Vision, Statistical Mechanics I, Experimental Physics I.

RESEARCH PUBLICATIONS

Isaac Liao, Rumen Dangovski, Jakob Nicolaus Foerster, and Marin Soljačić. Learning to optimize quasinewton methods. Transactions on Machine Learning Research, 2023a. ISSN 2835-8856. URL https:// openreview.net/forum?id=Ns2X7Azudy

Isaac Liao, Ziming Liu, and Max Tegmark. Generating interpretable networks using hypernetworks, 2023b. URL https://arxiv.org/abs/2312.03051

EXPERIENCES

Teaching Assistant - MIT 8.01 Classical Mechanics I

• Worked on a large language model used for generate physics problems to teach ~ 700 students.

Researcher - Tegmark AI Safety Group

- Wrote algorithms that prove recurrent neural networks to have equivalent behavior to state machines.
- Advances our understanding of provable machine learning systems, which are critical to AI safety.

Research Consulting - Beneficial AI Foundation

- Built a hypernetwork for simplifying neural network weights to enhance mechanistic interpretability.
- Reverse-engineered 4 algorithms learned by neural networks, to improve AI safety.

Researcher - Soljacic Group

- Invented a machine learning optimizer using learning to optimize (L2O) with quasi-Newton methods.
- Wrote theorems to prove the optimizer's convergence and flexibility to adapt to various loss landscapes.
- The optimizer outperformed Adam by 4.9x in loss, with the same number of steps, in some settings.

PROJECTS

Graduate Bayesian Modeling and Inference

- Invented a Bayesian version of the alternating least squares algorithm for large matrix completion.
- Made >2% RMSE improvement on the Netflix Prize Dataset for user-product recommendation systems.

Graduate Statistical Learning Theory

- Wrote theorems showing the parameter efficiency of randomized sparse neural network architectures.
- Performed experiments to verify the parameter-efficiency of sparse architectures over traditional ones.
- This result shows it is possible to save computer memory by compressing large machine learning models.

Quantum Physics III

- Derived the joint eigenvalue distribution of random Hermitian matrices and the Wigner semicircle law.
- Applications to emission spectra of quantum dots, a promising new technology in quantum optics.

Computer Vision

- Reinvented the variational autoencoder and designed a neural network for lossless image compression.
- Compressed the Kodak image dataset by 18% over raw bitmap encoding.

AWARDS AND HONORS

MIT Battlecode Competition: Champion, solo. \$8000 prize. Jan 2022 MIT Battlecode Competition: 7th place, solo. \$1000 prize. Jan 2021 MIT Battlecode Competition: Champion of Newbie division, solo. \$500 prize. Jan 2020 International Physics Olympiad: Silver Medal July 2019 International Physics Olympiad: Honorable Mention July 2018

Sep 2023 - Present

Sep 2023 - Present

Sep 2023 - Present

Sep 2019 - Jun 2023

Jun 2020 - Jun 2023

Jul 2023 - Aug 2023

Feb 2023 - May 2023

Sep 2022 - Dec 2022

Feb 2022 - May 2022

Feb 2021 - May 2021