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Random matrices often find applications in quantum systems whose eigenenergies are not easily
solved analytically, so their behavior is better thought of statistically. Such systems may include
but are not limited to heavy nuclei [7], quantum wires [4], and quantum dots [2]. A common point
of interest in such quantum systems is the set of energy levels which they exhibit, ie. their spectra,
because energy level gaps in spectra determine the wavelengths of light that the systems can emit.
This paper presents an analysis of the spectra of random Hamiltonian matrices, with applications
to the emission spectra of quantum dots, ie. small grains of metal. We combine non-degenerate
perturbation theory with ideas about Brownian motion to derive the joint distribution of energy
levels, and show that the level spacings can be used to model emission spectra of quantums dot with
impurities. In the end, we find that quantum dots have emission spectra which decreases to zero
for arbitrarily long wavelengths of light.

I. INTRODUCTION

Most realistic quantum systems have analytically
intractable Hamiltonians. For these systems, a nat-
ural step to draw insight into the system’s behavior
is to ignore the Hamiltonian’s complexities by treat-
ing the Hamiltonian as random, and using statistical
estimations of its spectra. Oftentimes, we would like
to learn about the emission and absorption spectra
of these systems, by studying the energy differences
between energy levels of the system, and it is specif-
ically these energy gaps which are modelled well by
the energy gaps in random Hamiltonians. Such sys-
tems include but are not limited to chaotic billiards
[3], metals with irregular impurities [1], quantum
dots [2], quantum wires [4], and heavy nuclei [8]. In
this paper, we aim to study these spectra by deriving
significant results in random matrix theory, with ap-
plications towards the emission spectra of quantum
dots with impurities.
The rest of the paper is structured as follows. In

Section II, we begins from the assumption that the
Hamiltonian of the system is represented by a ran-
dom matrix, and define what a random matrix is.
Then in Section III, we will view random Hamil-
tonians through the lens of perturbation theory to
introduce the effect of energy level repulsion. In Sec-
tion IV, we solve for the distribution of energy level
arrangements in random Hamiltonians using the ef-
fects of energy level repulsion. In Section V, we show
computationally that the spacings between energy
levels in a quantum dot are well modelled by the
random Hamiltonian. Finally, Section VI discusses
potential applications. For readers who are inter-
ested, Appendix A includes an additional derivation
of a result in random matrix theory known as the
Wigner semicircle law.
This paper is presented from a pedagogical view

of random matrix theory, and presumes that readers
have some basic probability knowledge. For readers
who need to review this, Appendix B states some
facts about normal distributions denoted N(µ, σ2)
which are relevant to this paper.

II. RANDOM HAMILTONIAN MATRICES

In order to study the energy gaps between lev-
els in random Hamiltonians, we would first like to
specify the exact way in which our Hamiltonians are
random. We will consider Hamiltonians over a finite-
dimensional state space of the form H0 = X† +X,
where each element ofX is drawn independently and
identically distributed (iid.) from a complex normal
distribution Xij ∼iid N(0, 1/2) + iN(0, 1/2). Un-
der this definition, H0 has iid elements distributed
like N(0, 2) along the diagonal, and iid elements dis-
tributed like N(0, 1)+ iN(0, 1) on one side of the di-
agonal. Our assumption that the Hamiltonian comes
in this form (or is proportional to this form) is not
true for most systems, but it will turn out that de-
spite this, random matrices of this form are still good
models to determine the energy gaps between levels
in quantum dots. Random Hamiltonians satisfy two
useful properties: invariance under unitary conjuga-
tion and scaling under random perturbation.

To show invariance under unitary conjugation,
take an arbitrary unitary matrix U . Note that the
distribution of X is invariant under Hermitian con-
jugate and multiplication by U . This means that
U†XU also comes from the same distribution as X,
implying that U†H0U = U†XU + U†X†U is from
the same distribution as H0.

To show that H0 scales under random perturba-
tion, we define a random matrix ˜δH independent of
but drawn from the same distribution as H0. Then
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since the variances in sums of random variables add
together, we know that H0 + λ ˜δH is distributed the
same way as

√
1 + λ2H0. Therefore, perturbing the

Hamiltonian H0 by the matrix

δH =

(
1√

1 + λ2
− 1

)
H0 +

λ√
1 + λ2

˜δH (1)

with randomly drawn ˜δH leaves the distribution of
H0 unchanged.

III. RANDOMLY PERTURBED ENERGY
LEVELS

Our goal is to find the gaps between energy levels
in a random Hamiltonian. To do this, we may first
solve for the distribution of the spectrum, ie. the
set of positions of the energy levels, based on the
fact that the random perturbation δH of Equation
1 leaves the distribution of H0 and consequently the
spectrum unchanged. In this section, we start by
finding out how the perturbation δH shifts the indi-
vidual energy levels in the spectrum.
We expand Equation 1 to second order in the small

quantity λ to determine the effect of δH on H0,

H = H0 + δH =H0 + λ ˜δH − λ2

2
H0 +O(λ3) (2)

and observe that our perturbation not only has
terms linear in λ, but higher order terms as well.
Non-degenerate perturbation theory as typically
taught in textbooks does not account for higher or-
der terms, so we must first extend the theory to ac-
count for these terms. We write out the eigenstates
and energy levels as power series in the perturbation
strength λ,

|ψn⟩ =
∣∣∣ψ(0)

n

〉
+ λ

∣∣∣ψ(1)
n

〉
+ λ2

∣∣∣ψ(2)
n

〉
+O(λ3) (3)

En =E(0)
n + λE(1)

n + λ2E(2)
n +O(λ3) (4)

and expand the eigenequation,

H |ψn⟩ = En |ψn⟩ (5)

(
H0 + λ ˜δH − λ2

2
H0 +O(λ3)

)
(∣∣∣ψ(0)

n

〉
+ λ

∣∣∣ψ(1)
n

〉
+ λ2

∣∣∣ψ(2)
n

〉
+O(λ3)

)
=
(
E(0)

n + λE(1)
n + λ2E(2)

n +O(λ3)
)

(∣∣∣ψ(0)
n

〉
+ λ

∣∣∣ψ(1)
n

〉
+ λ2

∣∣∣ψ(2)
n

〉
+O(λ3)

)
(6)

collecting matching powers of λ and deriving the first
and second order energy corrections:

E(1)
n = ˜δHnn (7)∣∣∣ψ(1)

n

〉
=
∑
k ̸=n

˜δHkn

E
(0)
n − E

(0)
k

∣∣∣k(0)〉 (8)

E(2)
n =− E

(0)
n

2
+
∑
k ̸=n

∣∣∣ ˜δHkn

∣∣∣2
E

(0)
n − E

(0)
k

(9)

The total perturbative effect produces energy level
shifts of

En =E(0)
n + λ ˜δHnn

+ λ2

−E
(0)
n

2
+
∑
k ̸=n

∣∣∣ ˜δHnk

∣∣∣2
E

(0)
n − E

(0)
k


+O(λ3).

(10)

which is determined by the random ˜δH. These en-
ergy level shifts depend on the matrix elements of ˜δH
in the H0 eigenbasis. Now, note that since H0 re-
tains its distribution under unitary conjugation but
˜δH has the same distribution asH0, ˜δH in the eigen-
basis of H0 has the same form as the original distri-
bution. In other words, the diagonal still consists of
˜δHnn ∼iid N(0, 2) values and one side of the diago-

nal still consists of ˜δHnk ∼iid N(0, 1) + iN(0, 1).
We may interpret total perturbative effect of

Equation 10 as follows:

• λ ˜δHnn causes energy level n to move ran-
domly.

• −λ2E(0)
n /2 causes energy level n to drift to-

wards zero.

• λ2
∑

k ̸=n | ˜δHnk|2/(E(0)
n − E

(0)
k ) causes energy

levels n and k to repel and drift away from
each other, with an “inverse distance” law.

All of these effects are independent, except for the
energy level repulsion, where pairwise repulsions
have an equal effect on both energy levels. The
energy level repulsion explodes only when the en-
ergy levels are close to one another and the drift
towards zero explodes only when the energy levels
are far from zero. Therefore, the energy levels must
converge to some confined joint distribution which
is neither arbitrarily concentrated nor spread out.
This is expected because the original random Hamil-
tonian H0 which exhibits these levels is of the scale
O(1).
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IV. FIXED JOINT DISTRIBUTION OF
ENERGY LEVELS

In this section, we figure out how the random
shifting of the spectrum in the random Hamiltonian
leads the spectrum to a fixed distribution. Further
random shifting of the spectrum no longer changes
its distribution.
For ease of study, we will write the spectrum as

the vector of energy eigenvalues E with components
En, which collects the energy levels together into
a single vector. Using the independence of matrix
elements of ˜δH, we find from Equation 10 that the
mean and covariance in perturbations of E is given
by

E(En − E(0)
n ) =λ2µn(E

(0)) +O(λ3) (11)

µn(E
(0)) =− E

(0)
n

2
+
∑
k ̸=n

2

E
(0)
n − E

(0)
k

(12)

E((En − E(0)
n )(Em − E(0)

m )) =O(λ4) (13)

E((E2
n − E(0)

n )2) =2λ2 +O(λ4) (14)

We write µn(E
(0)) to abbreviate the coefficient of λ2

in Equation (11) as a function of the vector of energy
levels, and let µ be the vector (µ1, ..., µN ). Note
that the perturbation induces both drift and vari-
ance on the spectrum E, of order λ2. Furthermore,
there is no correlation between energy level shifts in
∆E = E − E(0) to second order. Notice that ac-
cording to Equation 10, ∆E is normally distributed
for small λ. If one applies n successive independent
perturbations of strength λ2 = 1/n, then for large
n, then the motion of the spectrum E behaves much
like Brownian motion with drift, but where the drift
is a function of E.[9] Therefore, we will perform any
further calculations with small λ by approximating
the distribution of ∆E using a multivariate normal
distribution of mean µ(E) and variance 2λI.
Now that we have characterized the distribution

of shifts ∆E, we would like to find the distribution
P (E) of spectra which is fixed under this random
shift. Under this fixed distribution, we must have
equal probability of shifting to and from any given
spectrum E. In other words, we have∫

P (E|Eother)P (Eother)dEother

=

∫
P (Eother|E)P (E)dEother

(15)

where P (E1|E2) denotes the probability density of
shifting to spectrum E1 given that the spectrum be-
gan at E2. To find the fixed distribution, we will

make an approximating assumption which takes in-
spiration from the Metropolis algorithm [5] from
computer science. This based on the idea that if
the shift probabilities are set up such that we can
satisfy the Bayes rule,

P (Efinal|Einitial)

P (Einitial|Efinal)
=

P (Efinal)

P (Einitial)
(16)

for some P (E), then this would satisfy Equation
15 implying P (E) is the desired fixed distribution of
spectra. Therefore, we can use the known shift prob-
abilities on the left side of Equation 16 to deduce in-
formation about the spectrum distribution P (E) on
the right. We do this by figuring out how small per-
turbations cause the probability density of spectra
to flow in E space, to first order in λ. To characterize
the left side, define E(ϵ) = E(0)+ϵ∆E for some spec-
trum Einitial = E(0) and shift ∆E. Due to our ap-
proximation of ∆E as normally distributed, the ratio
of probabilities of transitioning from Einitial = E(0)
to Efinal = E(λ) and the reverse behaves for small λ
according to

lim
λ→0

ln P (E(λ)|E(0))
P (E(0)|E(λ))

λ
(17)

= lim
λ→0

ln
exp(− 1

2λ2 (λ∆E−λ2µ(E(0)))T (2I)−1(λ∆E−λ2µ(E(0))))
exp(− 1

2λ2 (−λ∆E−λ2µ(E(λ)))T (2I)−1(−λ∆E−λ2µ(E(λ))))

λ
(18)

= lim
λ→0

1

4λ
(∆E+ λµ(E(λ))) · (∆E+ λµ(E(λ)))

− 1

4λ
(∆E− λµ(E(0))) · (∆E− λµ(E(0)))

(19)

= µ(E(0)) ·∆E (20)

This quantifies how much more likely the spectrum is
to shift towards the drift versus against it. Because
of this, the fixed distribution P (E) satisfies(

d

dE
lnP (E)

)
·∆E (21)

= lim
λ→0

lnP (E(0) + λ∆E)− lnP (E(0))

λ
(22)

= lim
λ→0

ln P (E(λ))
P (E(0))

λ
(23)

= lim
λ→0

ln P (E(λ)|E(0))
P (E(0)|E(λ))

λ
(24)

= µ(E) ·∆E (25)

d

dE
lnP (E) =µ(E). (26)
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or in other words, the distribution of spectra bunches
up more in the direction of the spectrum’s drift.
Then using the drift direction and strength, we can
solve for P (E). Note that since ∂µn

∂E
(0)
m

− ∂µm

∂E
(0)
n

= 0, it

is possible to write µ as the gradient of a scalar func-
tion of E. According to Equation 26, this function
is the log of P (E). This finally gives us P (E), ie.
the probability density of the spectrum of a random
Hamiltonian H0,

P (E) =CN

∏
n

e−
(E

(0)
n )2

4

∏
k<n

|E(0)
n − E

(0)
k | (27)

for some normalization CN dependent on the num-
ber of energy levels N . This normalization can be
computed using Mehta’s integral [6]. The mutual
repulsion of energy levels manifests itself in the fact
that the probability density is higher when no pair
of energy levels are close to each other. In fact, there
is a probability density of zero that two energy levels
are equal.
Now that we have determined the distribution of

energy level spectra for random Hamiltonians, we
may study applications of this distribution to quan-
tum dots.

V. ENERGY LEVEL GAPS IN QUANTUM
DOTS

Physical systems such as quantum dots, ie. small
grains of metal, are capable of emitting energy in
the form of photons. UV light can be used to ex-
cite electrons in the dots, and with every electron
de-excitation towards the ground state a photon is
released with energy equal to the energy gap between
the initial and final state of the de-excitation. This
means that the energy differences between various
levels is what determines the emission spectra of the
quantum dots. More specifically, levels which are
closer together will emit longer wavelengths of light
upon transitioning. Quantum dots are the subject of
ongoing research, some of which aims to use them as
laser mediums and efficient light sources. By study-
ing the gaps between levels in quantum dots, we may
then learn about the emission spectra of quantum
dots. In this section, we show that random matrices
provide a good model of these energy gaps.
Our model for a quantum dot is a two-dimensional

infinite well in the shape of a metallic grain, which
may be irregular. The wavefunction of the electron
is thus confined to the interior of this grain, and the
Hamiltonian is

H =
p2x + p2y
2m

+ V (x, y) (28)

where V (x, y) is 0 within the grain and ∞ every-
where else. This model is known as a quantum bil-
liard, because in the classical limit, it models a par-
ticle which bounces off the wall like a billiard ball. It
is hypothesized that if the classical billiard exhibits
a phenomenon known as “chaos”, the quantum sys-
tem will have level gaps distributed in the same way
as in a random matrix. [3] In 1957, Wigner esti-
mated that at energy E, the probability distribu-
tion p(∆E) of gaps ∆E between consecutive levels
in random Hamiltonians is given by

p(∆E) =
πρ(E)2∆E

2
e−

πρ(E)2∆E2

4 (29)

where ρ(E) is the average level density at energy
E. Our aim is to show that this distribution ap-
proximately holds true for quantum dots as well, if
they are shaped like chaotic billiards. The level den-
sity ρ(E) for random Hamiltonians is given by the
Wigner semicircle law [7], which is derived in Ap-
pendix A. The true distribution of level spacings is
difficult but possible to derive from Equation 27 and
is not exactly equal to Wigner’s estimate in Equa-
tion 29, but the estimate is close enough for our
study nonetheless.

For the purposes of this analysis, we analyze a
grain which is square of length L in shape, but
with 20 randomly placed atomic defects modelled
as small infinite circular barriers covering 0.01% of
the square’s area each, as shown in Figure 2. The
presence of these barriers causes the grain to become
a chaotic quantum billiard. If these barriers are not
included, then the grain’s level density ρ(E) can be
solved analytically and turns out to be uniform:

ψn1,n2(x, y) ∝ sin(πx/L) sin(πy/L) (30)

En1,n2 =ℏ2π2(n21 + n22)/2mL
2 (31)

ρ(E) =

∫ ∞

0

∫ ∞

0

δ(En1,n2
− E)dn1dn2 (32)

=
mL2

2πℏ2
(33)

For the grain with defects, we may assume that
the level density ρ(E) is approximately the same,
and perform a computational simulation to deter-
mine the distribution p(∆E) of level spacings. By
discretizing space to a 100 × 100 grid to numeri-
cally approximate the system with the defects in-
cluded, we approximate the true Hamiltonian with
a 100× 100× (1− 0.01%× 20) = 9980 dimensional
Hamiltonian, and eigendecompose it to compute all
the energy levels of the grain and then the gaps be-
tween consecutive levels. We discard gaps formed
by levels in the lowest quarter of energies to avoid
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effects caused by the edge of the energy distribu-
tion, and the upper half of energies to avoid inaccu-
racies caused by space discretization in the simula-
tion. The distribution of the remaining quarter of
gaps, shown in Figure 1, verify that the energy gaps
between consecutive levels indeed follow the same
distribution as energy gaps in random Hamiltoni-
ans. This verifies that random Hamiltonians serve as
good models when studying the emission spectra of
impure quantum dots. Since in random Hamiltoni-
ans, the probability of finding an energy gap of small
size decreases proportionally to the size, we may de-
duce that the same is true for the quantum dot, and
thus impure quantum dots tend to emit exceedingly
small amounts of light at long wavelengths.

Figure 1: This histogram shows the calculated distribu-
tion of N energy gaps ∆E in a 0.2% impure quantum dot
depicted in Figure 2. Overlaid is Wigner’s predicted dis-
tribution of energy gaps in random Hamiltonians, from
Equation 29. The approximate agreement between the
two indicates that random Hamiltonians are suitable for
modelling the emission spectra of these quantum dots.

VI. DISCUSSION

The analysis we presented in this paper uses the
physics of non-degenerate perturbation theory to in-
troduce major results in random matrix theory such
as the joint distribution of energy levels in Equation
27, the Wigner semicircle law in Equation A13, and
the energy gap distribution in Equation 29. Our
nontraditional approach to random matrices illus-
trated how Brownian motion of the Hamiltonian al-
lows the distribution of spectra to smooth and flow
towards a fixed distribution over time. The repul-
sion of energy levels during this flow leads to a ten-

dency for the levels to space themselves apart, such
that there is a probability density of zero that the
random matrix has degeneracies.

Figure 2: The quantum dot used in our simulation is
a small metal grain with 20 randomly placed impurities,
each covering 0.01% of the area of the grain. An electron
travels freely within this grain, which is modelled by a
potential V (x, y) of ∞ within the impurities or outside
the grain, and 0 elsewhere. The distribution of spac-
ings between consecutive energy levels of the electron is
shown in Figure 1.

We have also shown that random Hamiltonians
serve as a good model for the behavior of energy level
gaps in quantum dots, which have potential uses
as laser media and efficient light sources in quan-
tum light emitting diodes (QLEDs). Quantum dots
are modelled as chaotic billiards, which are hypothe-
sized to have the same level spacing distributions as
random Hamiltonians, and this is empirically true.
Since there are fewer spacings as the spacing size
grows small, quantum dots tend to emit less light
at very long wavelengths than at moderate wave-
lengths.

In conclusion, the perturbation theory can be used
to study Hamiltonians represented by random ma-
trices, yielding random matrix theoretical results ap-
plicable to the physics of quantum dots.
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Appendix A: Wigner Semicircle Law

Many physical systems have a huge, potentially
infinite state space, so it makes sense to study ran-
dom Hamiltonians of large dimension. In this sec-
tion having already determined how the spectrum is
distributed in Equation 27, we will find that the en-
ergy level density for large random Hamiltonians fol-
lows the Wigner semicircle distribution.[7] The en-
ergy level density can be used as a normalization
when studying the statistics of the energy level gaps
like in Section V.
We take the limit as the number of states N goes

to infinity, and assume that the energy level den-
sity at energy

√
NE goes like

√
Nf(E)+ o(

√
N) for

some desired fixed function f which integrates to
1. This assumption will later turn out to be justi-
fied when we indeed find such a function f which is
well-behaved. Our goal is then to try to find this

function f . Without loss of generality, let f be zero
outside of interval (−E0, E0) for some E0 which is
not necessarily finite. Note that f is symmetrical
because we are equally likely to sample a Hamilto-
nian H versus −H, which have the negative of each
others’ energy levels, and thus reversed energy level
densities. We can then write the probability P (f)
that the energy level denstiy function function is f
by converting sums to integrals:

lnP (E) =CN − 1

4

∑
n

E2
n +

∑
k≤n

ln |En − Ek| (A1)

lnP (f) =CN

− 1

4

∫ √
NE0

−
√
NE0

dE E2
√
Nf

(
E√
N

)
+

1

2

∫ √
NE0

−
√
NE0

∫ √
NE0

−
√
NE0

dE1dE2

Nf

(
E1√
N

)
f

(
E2√
N

)
ln |E1 − E2| (A2)

=CN +
N2

2
lnN +N2g(f) (A3)

g(f) =
1

2

∫ E0

−E0

∫ E0

−E0

dE1dE2

f(E1)f(E2) ln |E1 − E2|

− 1

4

∫ E0

−E0

E2f(E)dE (A4)

Here, the scalar value indicated by −g(f) acts like
a “repulsive potential” which regulates the shape of
the density function f . Now suppose that the most
probable energy level density function is given by
some function f∗. Then g(f∗) > g(f) because g is
strictly concave on the space of normalized f . This
ensures that f∗ is infinitely more probable than any
other possible density function f ,

lim
N→∞

P (f∗)

P (f)
= lim

N→∞
exp(lnP (f∗)− lnP (f)) (A5)

= lim
N→∞

exp
(
N2(g(f∗)− g(f))

)
(A6)

→∞. (A7)

which suggests that the most likely density law max-
imizes the potential g(f∗). We may then solve for f∗

using the calculus of variations, or in other words,
by imposing the condition that no change ϵ∆f to
the density function f∗ within the interval (−E0, E0)
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can improve the value of the potential g(f∗ + ϵ∆f),

∀∆f : 0 =
d

dϵ
g(f∗ + ϵ∆f) (A8)

d

dϵ

∫ E0

−E0

E2
1(f

∗(E1) + ϵ∆f(E1))dE1

= 2
d

dϵ

∫ E0

−E0

∫ E0

−E0

dE1dE2

(f∗(E1) + ϵ∆f(E1))

(f∗(E2) + ϵ∆f(E2)) ln |E1 − E2| (A9)

∫ E0

−E0

dE1∆f(E1)(
E2

1 − 4

∫ E0

−E0

f∗(E2) ln |E1 − E2|dE2

)
= 0 (A10)

Since this above equation must hold for all ∆f which
integrate to 0 over (−E0, E0), we must have the
equation

4

∫ E0

−E0

f∗(E2) ln |E1 − E2|dE2 =E2
1 + C (A11)

for all E1 ∈ [−E0, E0] and with a constant C, and
this is solved when the energy level density f∗ follows
a semicircular shape with finite E0,

f∗(E) =
1

2π

√
E2

0 − E2 (A12)

=
1

2π

√
4− y2, E0 = 2 (A13)

and E0 is determined to be 2 by normalization of f∗.
This is called the Wigner semicircle law, and was
first found by Wigner in [7]. This law is more math-
ematically significant and less physically significant,
since most physical systems exhibit a different level
density function and the focus is on the emission
spectra derived from statistics of individual energy
level differences, rather than the global distribution
of energy levels.

Appendix B: Properties of Random Variables
and Normal Distributions

This section is a list of basic facts about proba-
bility and normal distributions which are relevant to
this paper.

• Expectation is linear. If we have random vari-
ablesX and Y , then E(X+Y ) = E(X)+E(Y ).

• If two random variables are independent, their
joint probability distributions factorize into
the product of their individual probability dis-
tributions.

• The acronym iid. stands for “independent and
identically distributed”.

• The covariance of a random vector x is the
matrix E((x−E(x))(x−E(x))†), and the vari-
ance σ2 of a random scalar is E(|x|2). Since
expectations are linear, covariances and vari-
ances add when their respective random vari-
ables add and are all mutually independent.

• The normal distribution denoted N(µ, σ2)
with mean µ and variance σ2 is a probability
distribution over the real numbers with prob-
ability density function

p(x) =
1√
2πσ

e−(x−µ)2/2σ2

.

• The complex normal distribution with mean
µ and variance σ2 is a probability distribu-
tion over the complex numbers with probabil-
ity density function

p(z) =
1

πσ2
e−|z−µ|2/σ2

.

The unit complex normal distribution is a
complex normal distribution of mean µ = 0
and variance σ2 = 1 and is written in this pa-
per as N(0, 1/2) + iN(0, 1/2).

• When adding real or complex normally dis-
tributed variables, the resulting sum’s mean
and (co)variance are the sum of each variables’
means and (co)variances.

• Multiplying a random variable by a constant x
causes its mean to scale by x and its variance
to scale by x2.

• Adding two normally distributed random vari-
ables or rescaling one normally distributed
random variable results in another normally
distributed random variable.

• A random vector of iid. real (resp. com-
plex) normally distributed values has a spher-
ically symmetric distribution, which is there-
fore unaffected when multiplied by an orthog-
onal (resp. unitary) matrix.

• The multivariate real normal distribution of N
variables, mean µ and covariance matrixΣ has
a probability density function of

exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)√

det(2πΣ)
(B1)
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