
Parameter-Efficient Approximation by Exploitation of
Sparsity

Isaac Liao
EECS

Massachusetts Institute of Technology
Cambridge, MA 02139

iliao@mit.edu

Abstract

We propose a novel neural network architecture which is highly expressive, in that
it is capable of approximating a huge class of sparse neural networks of a size
smaller by a logarithmic factor, regardless of the arrangement of the sparse weights.
In many cases, uniform approximation bounds for dense neural networks from n
inputs to n outputs are derived through the construction of a sparse subnetwork, thus
taking at least n2 parameters in the original dense network despite that sometimes
the sparse subnetwork only needs O(n) operations. Our architecture can then
reproduce this sparse subnetwork and replicate this uniform approximation bound
for itself, but instead using only O(n log n) parameters, an improvement upon
dense networks. Our architecture’s improved parameter efficiency could then
drastically reduce the memory requirements of neural networks with large hidden
dimension, allowing us to respond by scaling up the size of the model (ie. the
hidden dimension and the number of nonlinearities) by a factor of O(n/ log n), to
reuse the freed memory in a more expressive way.

1 Introduction

Machine learning researchers have been interested in sparsity for various reasons, including the
simplification of models (Grünwald, 2007), to provide regularization (Bartoldson et al., 2020) or
robustness (Cosentino et al., 2019), and to reduce computational costs (Hoefler et al., 2021); our
research aims towards the last of these, more specifically the reduction of memory. Modern machine
learning tends to operate in the regime of huge models, requiring vast overparameterization to achieve
state-of-the-art results. As a consequence, machine learning has become extremely memory-hungry
from the sheer quantity of parameters needed to be stored in the model. Lowering the number of
parameters required to achieve the same performance would therefore allow machine learning to
become more accessible to those with restricted computational resources, and would also allow those
with more resources to scale to larger problems.

Recently, there has been increased interest in sparsity of machine learning models, as it has been
shown that most of the weights in modern machine learning models can be removed without ill
effect on performance, thus drastically reducing the size of models as measured by parameter count.
Frankle and Carbin (2018) proposes that there are sparse subnetworks within large dense networks
which achieve similar performance to their dense counterparts, and shows this to be true by providing
an algorithm for pruning the weights of dense networks to produce performant sparse networks. In
essence, this is an assertion that the most parameter-efficient architectures for neural networks tend to
be sparse ones, and a proposition for an algorithm for finding such an architecture.

Since pruning methods like these begin with many weights and remove most of them away before
training, the memory requirements of the pruning process are similar to that of the original unpruned

Preprint. Under review.

network. Therefore, while the pruned model can be trained with much less memory, the memory
required for the construction of the neural network as a whole remains roughly unchanged when using
pruning methods, calling into question the efficacy of pruning methods for this particular purpose. To
alleviate this, we propose an alternative perspective on the construction of sparse networks: namely
that diverse assortments of sparse neural network structures need not be achieved by cutting down
huge dense structures, but can instead be configured from within a fixed structure of not much larger
size via learning. The key takeaway is that the known efficiency of gradient descent in searching
through a combinatorially large space of possible neural network weights can also be leveraged to
search through this combinatorially large assortment of sparse structures.

2 Related Work

Historically, statistical learning theory has often taken the view that real-world data is generated by
completely unknown processes, such that there was less motivation to study sparse computations
as opposed to dense computation structures. More recently, there has been an increasing amount
of interest in the assumption that real-world data is generated by sparse computations, making the
discovery of these sparse structures a central goal of sparsity research. This assumption arises from
the observation that anything that can be practically computed is practically computable with a sparse
computation, whereas this is not necessarily true for computations structured in a dense fashion.
Therefore, the assumption that we may choose to seek a sparse computation rarely undermines a
problem’s tractability.

Much research has therefore been devoted to the creation of sparse neural networks, and numerous
approaches have been proposed, not limited to the following:

1. Frankle and Carbin (2018) state the well-known lottery ticket hypothesis: that when ran-
domly initializing and training a dense neural network, there exists some sparse subnetwork
which can be trained in the same manner with the same initialization to produce better
performance. They show that a such a sparse neural network can be found by pruning
low-magnitude weights from a dense neural network.

2. Another line of work aims to grow and remove weights and/or neurons dynamically during
training of a sparse neural network (Hoefler et al., 2021).

3. Lastly, yet another line of work proposes to decompose dense matrices present in neural net-
works into smaller operations, such as singular value decompositions (Sainath et al., 2013),
tensor train decompositions (Zhao et al., 2019), and/or randomized sparse decompositions
(Liao et al., 2022).

Our work takes inspiration and technology from the third approach, the learning of matrix decom-
positions, to achieve the goal of the first approach, which is to assume that there is some sparse
computation which works well and to try to find it. Our work will heavily depend on the past work of
Liao et al. (2022), which provides a sparse linear neural network architecture which we will draw
heavily from and use in our experiments, along with some theoretical work associated with this
architecture, its initialization, and its expressive power.

3 Architecture

We propose to extend the sparse neural network architecture defined in (Liao et al., 2022), which
offers to replace n× n dense matrices with O(log n) or O(log2 n) sparse matrices, of O(n) weights
each, with the idea that the sparse computation graph formed allows for matrix multiplication with
O(n log n) or O(n log2 n) memory and time complexity rather than O(n2) like for dense matrices.
Their architecture allows them to build much larger linear operations than what dense matrices allow
for, in situations where the number of parameters is constrained. Section 3.1 details the construction
of their sparse decomposition, and Section 3.2 explains how we may insert biases and nonlinearities
to turn these matrix decompositions into neural networks with exceedingly large input and output
dimensions.

2

3.1 Linear Sparsity

Liao et al. (2022) defines a linear operator G̃(θ) ∈ Rn×n parameterized by θ as follows:

G̃(θ) =

N∏
i=1

B(θ(i))Pi (1)

where B(θ(i)) are block diagonal matrices with each block k by k for k ∈ N and filled with parameters
in θ(i), Pi are randomly chosen permutations, and N ∈ N is the depth. For our work, we choose
k = 2. This architecture can be extended to the case where the number of weights n per layer is
larger than the number of input and output neurons, simply by adding any required input neurons
with zero activation before applying G̃(θ), and removing extra output neurons after applying G̃(θ).

Like (Liao et al., 2022), we initialize each block matrix to a random orthogonal matrix, such that
G̃(θ) is initialized to an orthogonal matrix as well. This initially removes issues relating to gradient
magnitudes for learning. We encourage the layers of the network to retain any unused information for
later, ie. to maintain full-rankness, through regularization by penalizing the block matrices’ deviation
from orthogonal matrices. The regularization term for any one 2 by 2 block matrix B is the following
quartic:

2||I −BTB||2F (2)

which is the mean squared error of the squared singular values of B from 1. The global regularization
term is then computed by taking the mean of this expression over all the blocks B in all the B(θ(i)).

3.2 Nonlinear Sparsity

Modifying the compositionally sparse linear architecture of G̃(θ) from Section 3.1, we may insert
biases and nonlinearities after every block diagonal matrix to construct compositionally sparse
nonlinear architectures as well. More specifically, we may create networks as follows:

h
(0)
θ (x) =x (3)

h
(i)
θ (x) = tanh(bi +B(θ(i))Pih

(i−1)
θ (x)) (4)

hθ(x) =bN +B(θ(N))PNh
(N−1)
θ (x) (5)

where bi are learned biases, which may be initialized to zero. Note that at initialization, the Jacobian
of hθ at the origin is simply G̃(θ), which itself is an orthogonal matrix, counteracting issues relating
to gradient magnitudes for learning.

4 Theoretical Properties

4.1 Linear Representability

Let Flinear denote the set of functions which can be computed by sparse linear neural networks of
depth O(N/ log n), at most n weights per layer, and indegree/outdegree at most 2. Liao et al. (2022)
shows that with probability 1− (n!)O(1) over random selection of Pi, G̃(θ) can compute any function
in Flinear given the right choice of θ. Because of this result, any demonstration that G̃(θ) can compute
a linear operations merely requires showing that there exists a sparse linear neural network in Flinear

which computes it. In this manner, we deduce by construction of networks in Flinear that G̃(θ) with n
double the number of input and output nodes can represent matrix multiplication by:

• any rank k matrix with O(n log n(k+log n)) parameters, where the space of rank k matrices
has dimension kn;

• any permutation matrix with O(n log n) parameters, where this space contains n! ∈
eΘ(n logn) matrices;

• any sparse matrix with at most k weights per row and column, including convolutions
(without weight sharing) with O(kn log n) parameters;

3

• the discrete Fourier transform matrix with O(n log2 n) parameters (we must separate real
and complex components and have double the number of neurons); and

• any dense matrix with O(n2 log n) parameters.

I do not detail the constructions here, because they are uninteresting, and to save space. From these
examples, we see that oftentimes the number of parameters required is only a logarithmic factor
larger than the time complexity of the best known algorithm to compute the solution.

4.2 Nonlinear Representability

Let Ftanh denote the set of functions ftanh : Ri → Ro which can be computed by sparse tanh networks
of depth O(N/ log n), at most n weights per layer, and indegree/outdegree at most 2. Similarly to
Section 4.1, we seek to show in this section that with probability 1− (n!)O(1) over random selection
of Pi, hθ is capable of arbitrarily accurately mimicking any function in Ftanh under choice of θ,
thus motivating that hθ is highly expressive and parameter efficient. Since this result shows hθ to
imitate other compositionally sparse tanh networks, then we may convert any constructive proofs
for approximation bounds for sparse tanh networks into similar approximation bounds for the hθ

network. This makes the hθ network “universally capable of approximation” in a certain sense.
More specifically, let there be some set F of ground truth continuous functions f : Ri → Ro to
approximate, and let us have a continuous loss function ℓ : Ro × Ro → R. Take any scheme for
constructively proving a uniform approximation bound over some compact subset S ⊂ Ri of the
input space, in the form of a function C : F → Ftanh that gives the bound

inf
ftanh∈Ftanh

sup
x∈S

ℓ(f(x), ftanh(x)) ≤ sup
x∈S

ℓ(f(x), C(f)(x)) (6)

Then, we must also have a corresponding bound for hθ:

inf
θ
sup
x∈S

ℓ(f(x), hθ(x)) ≤ sup
x∈S

ℓ(f(x), C(f)(x)) (7)

This is because we may construct a function hθλ : Ri → Ro, where the weights θλ are parameterized
by λ ∈ R, such that hθλ uniformly converges to the desired function ftanh ∈ Ftanh when λ → ∞. We
may show this through the following.

Let us have some desired function ftanh ∈ Ftanh, which must represent some sparse tanh network
of depth d ∈ O(N/ log n), at most n weights per layer, and indegree/outdegree at most 2. Then,
separate this tanh network into its d sparse affine layers with at most n weights each. Our strategy
will be to partition the N layers of the hθ network into d subnetworks of N/d layers each, and have
each subnetwork arbitrarily accurately approximate one corresponding linear operation Ai of the
ftanh network with high probability (the offset of the affine layer can be accounted for since every
layer j of hθ contains offsets bj). (Liao et al., 2022) shows that if there were no activations nor biases,
this can be done for every layer with probability 1− (n!)O(1) under random sampling of Pi, ie. that
there exists some θ such that A1 = B(θ(1))P1B(θ(2))P2 . . . B(θ(N/d))PN/d. We may then add the
biases and activations back and use this solution θ to recreate the linear operation of A1 to arbitrary
accuracy over any compact set. Firstly, we set the biases to zero. Then, note that the Jacobian of this
subnetwork at the origin is already A1, and thus the subnetwork represents the linear operation of A1

to arbitrary accuracy over neighborhoods surrounding the origin. Using this fact, we may scale down
the first learned linear operation B(θ(N/d)) by a chosen parameter λ and simultaneously scale up the
last learned operation B(θ(1)) by λ, to keep the Jacobian the same but extend the domain where the
linear approximation near the origin is accurate. By taking λ → ∞, we then achieve arbitrarily small
uniform approximation error between Ai and the subnetwork over any compact set of inputs. Finally,
since the tanh activations connecting between sunetworks are also uniformly continuous, the entirity
of hθ then uniformly converges to ftanh over any compact set of inputs, upon taking λ → ∞.

We have thus shown that every function ftanh ∈ Ftanh is a limit point of the set of possible hθ. Finally,
by continuity of ℓ, we have the desired bound

inf
θ
sup
x∈S

ℓ(f(x), hθ(x)) ≤ inf
ftanh∈Ftanh

sup
x∈S

ℓ(f(x), ftanh(x)) ≤ sup
x∈S

ℓ(f(x), C(f)(x)) (8)

all of which only applies with probability 1− (n!)O(1) under random sampling of Pi.

4

This finally proves the desired universal representability result: given a target function F that
can be uniformly approximated over a compact set by some unknown neural network of depth
d ∈ O(N/ log n), at most n weights per layer, and indegree/outdegree at most 2, the target function
can then also be uniformly approximated by hθ too, which is not much more expensive as the
unknown neural network, merely being O(log n) times deeper.

In the same manner as in Section 3.1, with this result we may deduce that hθ(x), with every layer
size O(1) times larger than the number of input and output nodes, can represent given the correct θ:

• n-way multiplexers with O(n log2 n) parameters;

• n-bit binary adders with O(n log2 n) parameters (via the Kogge-Stone adder); and

• n-bit bitshift operators with O(n log2 n) parameters,

5 Experiments

We perform several experiments to show that the architecture of G̃(θ) from Section 3.1 is indeed
capable of performing computations like those in Section 4.1 in a parameter-efficient manner. We do
not use our architecture from Section 4.2 to approach nonlinear target functions from Section 3.2
because we could not learn any of them even with vanilla dense networks of much larger parameter
count; they are too difficult to learn and the loss would never decrease. We will thus only describe
our experiments with linear computations.

For each experiment, we define a ground truth square matrix A ∈ Rn/2×n/2 and we optimize

argmin
θ

Ex∼N (0,I)

[
2

n
||G̃(θ)x−Ax||2

]
(9)

via online stochastic gradient descent. We generate the data online by sampling batches of x from
N (0, I) and computing the output Ax using the ground truth A at every step.

We use n = 2048, with input and output dimensions of n/2 = 1024 for all experiments. We will take
the number of parameters in θ to be less than n2/4 ≈ 1.0M to show that we need fewer parameters
than densely parameterized operations to be able to perform the same computations. This necessarily
means that the VC dimension of G̃(θ) will be far lower than n2/4, so we should expect to perform
poorly if A is an arbitrary dense matrix. For all of these experiments, we double the number of
neurons from n/2 to n at the input by appending zeroes to the input vector, and slice away the last
n/2 neurons for the output.

We condition A in four ways such that Ax can be “computed efficiently” for arbitrary x, ie. that
A ∈ Flinear, and we show that G̃(θ) can perform these computations despite its limited number of
parameters and its inability to perform dense matrix multiplication in general. For case, we will
define a conditioning difficulty parameter k which we may adjust from 1 to 5 to observe the effect on
performance. We vary both the difficulty k and the G̃(θ) architecture depth N , and train each G̃(θ)
for 7000 steps with Adam of learning rate 0.01 and regularization parameter 3, and then decrease the
regularization parameter to 0.3 for another 3000 steps, and finally decrease the learning rate to 0.001
for another 2000 steps, and measure the final mean squared error achieved over the last 1000 steps.

5.1 Low Rank Matrices

We attempt to learn matrix multiplication by A of low rank k. We sample A randomly by multiplying
together two random unit normal matrices U, V ∈ Rn/2×k as A = UV T /

√
nk/2. By varying

the rank k from 1 to 5 inclusive, we vary the number of degrees of freedom (dof) of A from 2047
to 10235. In Figure 1, we show that by varying N and thus the number of parameters in G̃(θ),
we observe that it takes about 25k parameters for G̃(θ) to learn the solution, where this threshold
increases with the difficulty k. Note that the receptive field of any output neuron can only reach the
entire set of input neurons after a depth of 10, corresponding to ≈ 20k parameters, and thus in theory
any such threshold must be above 20k, and in practice the threshold is not much higher than that
at all. This signals that G̃(θ) is good at making efficient use of its depth, because it can learn the
solution almost as soon as it exceeds the necessary depth.

5

0 20k 40k 60k 80k 100k
parameters

0.00

0.25

0.50

0.75

1.00

tra
in

in
g

lo
ss

dof = 10.2k
dof = 8.2k
dof = 6.1k
dof = 4.1k
dof = 2.0k

dof = 1.0M

low_rank
dense

Figure 1: Ability of G̃(θ) with varying numbers of parameters to learn multiplication by random
rank-k matrices where k varies from 1 to 5. Each red line represents one value of k, and is labeled
with the corresponding number of degrees of freedom (dof) in the rank-k matrix. We observe a
thresholding effect where G̃(θ) needs ≈ 25k parameters to find the solution. Notably, this threshold
is higher than the number of degrees of freedom in the solution, but is still much lower than the
number of degrees of freedom of a generic dense matrix. The black line shows the ability of G̃(θ) to
learn multiplication by an iid random normal dense matrix with variance 1/

√
n/2, for comparison.

5.2 Band Matrices/Convolutions

We attempt to learn one dimensional convolutions with receptive field size k, without parameter
sharing. We sample the weights of the convolution from normal distributions of standard deviation
1/

√
k. We vary k, and thus also the number of degrees of freedom of A from 1024 to 5120. In Figure

2, we again show by varying N and thus the number of parameters in G̃(θ), that it takes about 25k
parameters for G̃(θ) to learn the solution, where this threshold increases with k. Interestingly, in
this case we also observe a performance drop when excessively many parameters are given. We
hypothesize that this is because in the infinite depth limit, the random orthogonal initializations of the
block matrices cause the learning behavior of the G̃(θ) network to behave in a manner similar to if
G̃(θ) were parameterized as a dense matrix. This would remove any biases of G̃(θ) towards learning
solutions that are more compositionally sparse.

5.3 Sparse Matrices

We attempt to learn multiplication by random sparse matrices of kn/2 nonzero weights sampled from
normal distributions of variance 1/

√
k. The positions of the nonzero weights within the A matrix are

uniformly randomly chosen. We sample the weights of the convolution from normal distributions.
The rest of this experiment proceeds similarly to the experiment of Section 5.2, and Figure 3 shows
the results.

5.4 Permutation Matrices

We attempt to learn to apply a randomly chosen permutation to the vector x. There is no difficulty
parameter k for this task. The rest of this experiment proceeds similarly to the experiment of Section
5.2, and Figure 4 shows the results.

6

0 20k 40k 60k 80k 100k
parameters

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

lo
ss

dof = 5.1k
dof = 4.1k
dof = 3.1k
dof = 2.0k

dof = 1.0k

dof = 1.0M

band
dense

Figure 2: Ability of G̃(θ) with varying numbers of parameters to learn multiplication by band
matrices of k bands. Other details are identical to those in Figure 1. In this plot, we also observe
that if G̃(θ) is given too many parameters, it begins to lose its ability to learn the band matrices, as
evidenced by the upward slopes towards the right side of the plot.

0 20k 40k 60k 80k 100k
parameters

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

lo
ss

dof = 5.1k
dof = 4.1k
dof = 3.1k
dof = 2.0k
dof = 1.0k

dof = 1.0M

sparse
dense

Figure 3: Ability of G̃(θ) with varying numbers of parameters to learn multiplication by random
sparse matrices of kn/2 nonzero weights. Other details are identical to those in Figure 2.

6 Discussion

We have shown in Section 4.2 that the G̃(θ) linear neural network architecture defined originally
in (Liao et al., 2022) can be extended to create a nonlinear architecture with similar theoretical
properties. Namely, we define an architecture hθ which can approximate to arbitrary accuracy any
sparse tanh network out of a large class Ftanh, shallower by a logarithmic factor in hidden dimension.
This allows us to transform many uniform approximation bounds for tanh networks contingent on
the construction of an unknown sparse tanh subnetwork, into uniform approximation bounds for hθ,
without having to figure out the unknown structure of the sparse tanh subnetwork.

7

0 20k 40k 60k 80k 100k
parameters

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

lo
ss dof = 1.0M

permutation
dense

Figure 4: Ability of G̃(θ) with varying numbers of parameters to learn to to apply a permutation to
the input. Other details are identical to those in Figure 2. The number of degrees of freedom in a
permutation is not shown because it is zero, since the set of permutation matrices is discrete.

We have also shown through the experiments of Section 5 that the original G̃(θ) network is practically
capable of learning a diverse range of the linear operations in Flinear despite having relatively few
parameters, which was supported only theoretically in (Liao et al., 2022). These linear operations
were sometimes extremely unrelated to one another (eg. sparse matrices and low-rank matrices),
barring that they were all compositionally sparse in some way, and the single G̃(θ) architecture was
still capable of learning each of them. We observed that after a certain threshold in the number of
parameters, G̃(θ) was able to learn the linear operations to a much higher precision, and that this
threshold is crossed shortly after G̃(θ) gains the necessary depth to reproduce the unknown sparse
ground truth computation representing the linear operation. We have also discovered that when
G̃(θ) is given exceedingly many parameters performance worsens, creating a “goldilocks” zone of
network depths, and we present a hypothesis for why this happens. We leave further exploration of
this phenomenon for future work.

7 Conclusion

Altogether, our theoretical extension and experimental testing of the G̃(θ) network in (Liao et al.,
2022) motivates that the optimization of randomized sparse neural networks and matrix decomposi-
tions is a remarkably effective technique for the parameter-efficient discovery of sparse computation
structures. In situations where the parameter count is a bottleneck, such techniques may be used to
reduce the parameter count while maintaining much of the expressive power of a parameter-hungry
dense neural network. In cases where memory is the issue, the memory freed by these techniques
could allow us to upscale neural networks to problems of much higher dimension than ever before.

References
B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher. The generalization-stability tradeoff in

neural network pruning. Advances in Neural Information Processing Systems, 33:20852–20864,
2020.

J. Cosentino, F. Zaiter, D. Pei, and J. Zhu. The search for sparse, robust neural networks. arXiv
preprint arXiv:1912.02386, 2019.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

8

P. Grünwald. The Minimum Description Length Principle. 01 2007. ISBN 9780262256292. doi:
10.7551/mitpress/4643.001.0001.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241):
1–124, 2021.

I. Liao, R. R. Dangovski, J. N. Foerster, and M. Soljačić. Learning to optimize quasi-newton methods.
arXiv preprint arXiv:2210.06171, 2022.

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 6655–6659, 2013.
doi: 10.1109/ICASSP.2013.6638949.

Q. Zhao, M. Sugiyama, L. Yuan, and A. Cichocki. Learning efficient tensor representations with
ring-structured networks. In ICASSP 2019-2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 8608–8612. IEEE, 2019.

9

	Introduction
	Related Work
	Architecture
	Linear Sparsity
	Nonlinear Sparsity

	Theoretical Properties
	Linear Representability
	Nonlinear Representability

	Experiments
	Low Rank Matrices
	Band Matrices/Convolutions
	Sparse Matrices
	Permutation Matrices

	Discussion
	Conclusion

