
Differentiable Entropy Codes for Trained Image Compression

Isaac Liao
MIT

77 Massachusetts Avenue, Cambridge MA
iliao@mit.edu

Abstract

Information compression is a key goal in the study of
machine learning and artificial intelligence, since it im-
plies the possession of knowledge. We explore in this re-
port a novel class of lossless image compression schemes
to extract as much knowledge and structural information as
possible from an image. Our main goal is to explore the
feasability of compression through flexible forms of image
generation, in contrast to current methods which tend to
be restrictive and less adaptive. The compression scheme
which we rely on allows us to concurrently train the content
and quantity of encoded information at the same time, us-
ing a traditional machine learning optimizer to effectively
optimize the file contents to minimize their required size.
The direct training of the encodings circumvents our need
to design an encoder, allowing us to use all sorts of decoder
architectures which we would otherwise not be able to come
up with an encoder for.

1. Introduction
A simple way to guage an upper bound for the amount

of knowledge that an intelligent system has learned from a
dataset is to ask the system to compress the dataset into as
small a file as possible. This is because in order to compress
data, the system must be able to at least partially predict the
data, and to do this it must hold knowledge about the data.
This means that a better compression ratio necessarily in-
dicates better knowledge of the dataset. Thus, compression
ratios can serve as a metric to measure the amount of knowl-
edge or intelligence contained within a system. This is why
the machine learning researchers often study compression,
since a good compression ratio necessarily implies that we
have constructed a system which is intelligent or knowl-
edgeable.

In this report, I will present a class of lossless image
compression schemes which makes a direct attempt to opti-
mize a compression ratio. Unlike in typical image compres-
sion algorithms, I do not aim for speed of compression and

decompression so long as the problem can still be solved
within a reasonable amount of time, as I have no intent to
use my method for the typical purposes of compression, but
only to extract knowledge from images. The main innova-
tion which I present is a special format for the representa-
tion of encodings containing information about an image.
An approximation of the encoding and decoding process is
fully differentiable, allowing us to include the entropy of
the encodings and the encoded data both as part of gradient
calculations. This opens up the possibility of compression
by direct minimization of the total entropy by tuning the
encodings, and lifts restrictions on the structure of the de-
coder.

2. Related Work

This work is inspired by the Hutter prize for compressing
human knowledge1 which is a contest which aims for the
same goals which I have stated, but with a database of text
rather than images.

The current most popular method of lossless image com-
pression the portable network graphic (PNG) file format.
PNG uses text compression methods such as Lempel-Ziv
dictionary coding and Huffman coding. It also implements
a rudimentary form of prediction of pixel colors and stores
only prediction errors. Other methods such as [3], [1], and
[2] include the use of a convolutional neural network to
generate encodings and a deconvolutional neural network
to restore the image. Neural methods currently hold state-
of-the-art compression ratios. Unfortunately though, these
neural methods may only be used for fixed-size images, and
thus are not as flexible as PNG. Note that lossy compression
algorithms may be transformed into lossless algorithms by
appending tables recording the error for every pixel to the
compressed files. A caveat is that these “error tables” must
be entropy coded to reduce their size, and thus a distribution
of the errors must be known in advance, which makes this
approach difficult.

1More information can be found at http://prize.hutter1.
net/

1

http://prize.hutter1.net/
http://prize.hutter1.net/


3. Method

I will first describe the information contained within the
encodings, then how this is used by the decoder, and finally
how the encoder simply performs gradient descent on an
approximation of the decoder.

3.1. Codec

The default representation of the file which we work with
consists of a list of encodings, appended with an entropy-
coded per-pixel error table.

We use arithmetic coding for the error table, and thus the
expected distribution of errors must be given in advance in
order to decode the error table. This distribution takes the
form of a per-pixel per-channel Cauchy distribution, with
scaled means and spreads taken as separate channels of the
output of a decoder CNN which we describe later.

Each encoding is some element of a predefined sample
space of finite measure. For example, an encoding might
be 0.78 on the interval from 0 to 1 of finite length, or
(1/2,

√
3/2) on the unit circle of finite perimeter. To store

information in these encodings, we specify that each encod-
ing must be restricted to a certain part of the sample space,
for example that the point on the circle is in the first quad-
rant. Each encoding in a list may be restricted to its own
portion of its own size: some may be unrestricted, while
others may be narrowed very nearly to a point. The amount
of entropy contained in each of these encodings is then the
negative log of the fraction of the sample space that the
encoding is restricted to. For instance, specifying the first
quadrant of the circle adds two bits to the total entropy.

In this work, we only use the unit interval and the unit
circle as sample spaces, and contiguous intervals with a low
and high bound (angular bounds for the unit circle) as the
restricted regions. Their dimensionality of one allows for
us to approximate gradients with respect to the restricted
region bounds, facilitating the training process central to our
work.

3.1.1 File Storage

When we store encodings into a file, we only specify that
they must each fall within their restricted intervals. A the-
oretically entropy-efficient way to store these encodings is
to seed a random number generator with a fixed seed, and
use it to guess entire lists of encodings until we find a list
which puts each encoding within its respective restriction
in the sample space. The number of lists we try is then an
integer which can be stored in a file, and a set of valid en-
codings can then be restored by reading the number of tries
from the file and generating that many lists of encodings
with the same seeded random number generator. Further-
more, if the entropy of the list of encodings is known to the

decoder beforehand, then this number of tries can be de-
termined to come from an exponential distribution whose
decay depends on this entropy, and therefore this number
of tries can be compressed through arithmetic coding. In
theory, this allows us to store arbitrarily long lists of encod-
ings, each with arbitrarily large or small entropies, in a file
of the same total entropy, with a negligible constant entropy
overhead of about one nat2 in expectation.

In practice, it becomes infeasible to store any more than
about 10 nats at a time through this method because this
would require us to generate copious amounts of random
encodings. Our best option is to partition the encodings into
segments of∼8 nats, produce the integer number of tries for
each segment, and then arithmetically encode the entire se-
quence of integers, given that the entropies of each segment
are known to the decoder.

Two more layers of additional partitioning, segmenta-
tion, and other forms of separation such as intermediate file
storage must be used to overcome the computational restric-
tions of large integer multiplication and RAM size, respec-
tively. These additional techniques must also be used for the
arithmetic encoding of the error table, since it suffers from
the same computational restrictions.

Since it is possible in theory to store the list of encod-
ings in a file of nearly the same entropy, we know that
the encodings can only possibly contain the amount of in-
formation indicated by their entropy. Empirically though,
these computational workarounds result in an addition of
prohibitively large amounts of entropy to the file. This re-
sults in a highly degraded compressed file size, despite the
fact that the codec could have theoretically compressed it to
be much smaller. In this case, we know that the additional
entropy is merely due to the codec, and is not representative
of the amount of knowledge we have extracted from images,
which is better measured by the theoretical entropy. Thus,
for the sake of the study of intelligence, we argue that the
theoretical entropy as the relevant measure of success, but
for completeness we will report both the theoretical entropy
and the file size.

3.1.2 Gradients of Encodings

Often, we need to differentiate across the encoding process
in order to train the center and size of the restricted region of
each encoding, as these are the variables which produce the
compressed file and determine what image gets generated.
The error table is not trained; instead it is merely there to
correct for any “mistakes” that the file of encodings may tell
the decoder to make, in order to enforce the losslessness of
the compression. But since the codec consists of discrete
steps, the best we can do is to approximate the behavior

2Just as a bit can be guessed correctly half the time, a nat can be guessed
correctly 1/e of the time.

2



of the codec during training in a way such that a “pseudo-
gradient” can be taken.

Our method of doing this is to sample random uniform
encodings on the unit interval, and then linearly map them
onto the restricted intervals of each encoding using their
bounds. It is essential to sample first and then map to the
region, and care must be taken not to sample directly from
within the bounds, or no gradients will flow to the bounds
and training will not happen. The default representation of
a restricted interval is a pair (a, b) where a is the center and
ln(1 + eb) is the entropy, from which the interval width can
be computed. This allows for extremely large or small en-
tropies to be learned, as both extremes may be useful in our
method.

3.2. Decoder

The decoder algorithm mostly consists of a CNN which
performs repeated superresolution of a small uniform fixed-
size seed image of many channels, until it reaches the size
of the desired image. It then applies a CNN head which
outputs an image of 6 channels: a Cauchy distribution’s
mean and width for each color for each pixel. An error table
is finally generated through arithmetic coding according to
these distributions, and its entropy may be calculated. En-
codings may be used in a variety of ways to affect the output
of the decoder. The two options which we explore are the
use of encodings to store the weights of the CNN, and the
adding of per-pixel encodings as new channels within the
layers of the superresolution CNN and the CNN head.

For each superresolution, the following steps are per-
formed:

• We begin with an image with many channels.

• The image is doubled in size through upscaling.

• Optionally, one row and/or column of the image is
cropped away. The choice whether or not to crop is
taken such that we end up with a final image of the
correct dimensions.

• The image passes through several convolutional lay-
ers, each with a stride of 1, a kernel size of 3, and no
padding. This reduces the image size by double the
number of convolutions in both dimensions. The final
number of channels is the same as that of the image we
started with.

Before performing the superresolutions, we first backward-
compute the sequence of image sizes which are required to
produce the output image size. These image sizes decay
exponentially until they reach a fixed minimum size, which
we take to be the size of the seed image.

All parts of the network other than those specifically said
to be part of the encodings are assumed to be part of the de-

coder. These parts must be trained using Adam during train-
ing time, and must function well during test time regardless
of what image is being decoded. To train the decoder, we
concurrently train the encodings’ restricted intervals along
with all parts of the decoder, to minimize the log of the total
entropy of the encodings and the error table. We have found
it useful to begin by weighing the entropy of the encodings
very lightly early on in training, and to gradually increase to
full weight later on, since otherwise the optimizer immedi-
ately learns to encode nothing before it is able to learn that
the encodings may be useful to it.

3.3. Encoder

The encoder simply uses the Adam optimizer to train the
encodings’ restricted intervals with a fixed decoder in order
to minimize the log of the total entropy of both the encod-
ings and the error table.

4. Method Variants
We have tested two variants of encoder/decoder pairs,

which both make use of the idea of differential entropy
codes, but in different ways.

4.1. Per-Pixel Circular Encodings

The first method we attempted was to concatenate per-
pixel encodings to the image within the convolutions of
the superresolver and the head. The encodings were repre-
sented as angles on the unit circle, and the cosines and sines
of the encodings were taken before concatenating them onto
the images as new channels.

The superresolver CNN began with an image of 20 chan-
nels. It then upsampled and passed the image through a con-
volution with 40 channels, a relu activation, then a convolu-
tion with 20 channels. 5 of these channels were then used to
create encoding interval sizes, and the sines and cosines of 5
encodings per pixel were concatenated to the image. It then
passed the image through another 40 channel convolution,
a relu activation, and a final convolution back to the origi-
nal 20 channels. The head CNN did the same operations,
but with a different set of weights, and ending with 6 chan-
nels. During the final stages of training, we froze the stages
of the superresolution one by one and generated their true
encodings rather than their random approximations, so that
the later stages could fine tune to the true encodings that the
earlier stages had received. The superresolver, head, and
encodings for up to only a quadrant of each of eight images
were trained at the same time due to RAM restrictions.

This method was designed with the idea in mind that the
simple superresolver would predict some of the details in-
troduced during upscaling, and request encodings wherever
needed to fill in anything missing at that scale. This would
allow for the encodings to produce image features of all
sizes. During encoding, we initialized 3 channels of each

3



layer of encodings with the target image, scaled and resized
as necessary. We needed to train the first 20 steps purely
with the objective of maximizing the encodings’ entropy
to encourage the encoder to request encoded information,
as it did not do this by default. We also omitted the en-
codings’ entropy from the loss function thereafter until the
last 500 steps where this would be quickly trained, because
otherwise the encoder would revert and again decide not to
request the encodings, before it learned how to use them.

4.2. Unit Interval CNN Weight Encodings

While debugging the CNN in the first method, we no-
ticed that it was powerful enough to perform compression
without using any corrections at all. Moreover, the file size
of the raw CNN weights was less than the size of the im-
age, so we decided that another possible approach would
be to use the encodings to encode only the CNN weights
instead, and not concatenate any encodings to the image in
between convolutions as before. The CNN weight encod-
ings lied on the unit interval, and the decoder used a small
neural network of layer sizes (1, 40, 40, 1) and relu activa-
tion to map these to raw CNN weights. These were then
inserted into the CNN, which superresolved the seed image
into the desired image. To break translational symmetry,
we had to add zero-padding to the convolutions, which had
the side effect of reducing the seed image size to a single
pixel. Every time an image was compressed, a full CNN
would be trained to generate the entire image. The super-
resolver CNN had layer sizes (40, 200, 100, 40), while the
CNN head had layer sizes (40, 100, 6), and all activations
were relu. The CNN weights’ restricted interval centers
were first trained for 3500 steps to minimize only the error
table entropy, and then their interval lengths were trained for
2000 steps to minimize the total entropy, for the same rea-
sons as in the first method. A major downside to using this
technique is that although the learned CNN weight encod-
ings may have a low entropy indicating that they efficiently
store information about the image, their restricted interval
lengths cannot be predicted in advance, so it becomes prac-
tically infeasible to arithmetically encode the weights for
file storage using the techniques previously described, with-
out introducing copious amounts of entropy.

5. Evaluation

The images used for compression come from the Kodak
image dataset3, consisting of 24 images. We have split the
dataset by assigning the first group of eight as training data,
the second group of eight as validation data, and the last
group of eight as test data. The per-pixel encoding method
was trained on one quadrant of each of the eight training

3More information can be found at http://r0k.us/graphics/
kodak/

Table 1: Average entropies of compressed test images.

Method Average Entropy

No Compression 1152KB
PNG 629KB
Per-Pixel Encodings 1001KB
CNN Weight Encodings 947KB

(a) 602KB (b) 781KB (c) 671KB (d) 492KB

(e) 637KB (f) 702KB (g) 558KB (h) 706KB

Figure 1: Test dataset of images to compress. PNG file
sizes are shown below each image. The file size of the raw
uncompressed 8-bit bitmap image is 1152KB for all images.

images, and the CNN weight encoding method was trained
on only the first image of the training data. Both methods
were used to compress the images as small as possible. The
resulting file sizes, averaged over the eight test images, are
shown in Table 1. The CNN weight encodings cannot be ef-
ficiently entropy-coded into a file for storage because their
distributions are not known during decoding, so their file
sizes are replaced with their theoretical counterparts. De-
spite this, their theoretical entropy is still indicative of how
much the CNNs have learned about the images. We also
visualize the per-pixel means and errors produced by the
CNNs for both methods, as a way to depict the respective
contributions of the encodings and the error tables in gener-
ating the images. These visualizations are shown in Figures
1, 2, 4, 3, and 5. An intermittent bug in our arithmetic cod-
ing also corrupted large amounts of encodings for the per-
pixel encoding method, causing pixellation artifacts which
ruined the small error table sizes, since larger corrections
were needed to remove the artifacts. While we were still
able to compress the images to a smaller size than the orig-
inal raw bitmaps for both methods, we were unfortunately
unable to surpass the quality of the commonly used PNG
algorithm as we stated as our original goal.

Several observations can be made from these results
about the information content of raw uncompressed bitmap
images. Firstly, much of the image entropy takes the form
of noise captured in the error tables rather than structure

4

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/


170KB, 931KB 182KB, 1006KB 174KB, 977KB 149KB, 823KB

162KB, 958KB 190KB, 950KB 163KB, 915KB 170KB, 1018KB

Figure 2: Predicted image means generated by the CNN
weight encoding method. The theoretical entropies of the
weight encodings and the total entropies are shown, respec-
tively.

761KB 824KB 802KB 674KB

796KB 759KB 751KB 848KB

Figure 3: Error tables and their sizes, from the CNN weight
encoding method.

45KB, 892KB 74KB, 1041KB 40KB, 1061KB 55KB, 979KB

59KB, 959KB 30KB, 1137KB 68KB, 1004KB 69KB, 935KB

Figure 4: Predicted images means generated by the per-
pixel encoding method. The actual file sizes of the encod-
ings and the total entropies are shown, respectively. Due
RAM limitations, we actually store hundreds of files for
each image, and the sum of their sizes is what is shown.

captured by the encodings, and is therefore not very succep-
tible to compression. Secondly, the CNN weight encoding
method tends to capture only large scale objects, but is still
able to compress, indicating that a significant portion of the
entropy is present as large-scale structure, and is compress-
ible. The performance of the per-pixel encoding method
analogously shows that a significant portion of the image

846KB 966KB 1021KB 924KB

900KB 1107KB 936KB 866KB

Figure 5: Error tables and their sizes, from the CNN per-
pixel encoding method. Artifacts from a bug in our arith-
metic encoding force us to use a larger error table.

entropy is present as compressible small-scale structure too.

6. Conclusion
We have demonstrated in this paper how one can re-

duce the problem of image compression into an optimiza-
tion problem for which we may apply traditional machine
learning methods. The codec which we have introduced
has a differentiable approximation, allowing the content and
quantity of information to be trained concurrently. This
gives us tremendous flexibility in choice of decoder archi-
tecture, since we can always use an encoder like our to train
the encodings to minimize their entropy, and subsequently
convert them into a file. In particular, we have studied gen-
erative decoders, which repeatedly superresolve a seed im-
age to produce the target image from very little information
and then apply corrections. Our codec could potentially be
used to provide increased flexibility in learned generative
compression of other types of data too, not only images.
We hope that our methods may therefore become useful in
future work on compression.

References
[1] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Practical full resolution
learned lossless image compression, 2020. 1

[2] Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Ser-
gio Gómez Colmenarejo, Ziyu Wang, Dan Belov, and Nando
de Freitas. Parallel multiscale autoregressive density estima-
tion, 2017. 1

[3] George Toderici, Damien Vincent, Nick Johnston, Sung Jin
Hwang, David Minnen, Joel Shor, and Michele Covell. Full
resolution image compression with recurrent neural networks,
2017. 1

5


