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Abstract

Low-rank approximations are one of the primary
techniques for large matrix completion problems,
which underlie technologies such as recommenda-
tion systems. In this paper, we derive an equiva-
lence between the alternating least squares (SVD-
ALS) solution algorithm and the coordinate as-
cent variational inference (CAVI) algorithm, to
reimagine SVD-ALS from within the Bayesian
framework. We then expand the class of approxi-
mate posteriors to construct an extension of SVD-
ALS which outperforms the original by over 2%
in Netflix Prize Dataset movie rating prediction
RMSE.

1. Introduction
Recommender systems are a powerful technology for prod-
uct marketing, whereby a service can increaset profits by
accurately recommending products to users which they are
most likely to choose and/or rate highly. Oftentimes, the
simplest data source to generate predictions from is the
history of past purchases and ratings, with each purchase
marked by the user ID, product ID, datetime, and rating. In
this paper, we will focus on the application of movie recom-
mendations, where the products are movies and a “purchase”
is when a user watches a movie and rates it.

A common way to formulate this problem is as a large matrix
completion problem. The simplest version of this problem
assumes that no user watches the same movie twice, all
users always rate a movie after watching, and the datetimes
are irrelevant. All the data can then be completely described
by a rating matrix R ∈ (R ∪ {blank})n×m where there are
n movies and m users. The element Rij is the rating that
user j gave movie i if they watched it, or is left blank if
the user did not watch this movie. We try to estimate these
blank values with as small as possible root-mean-squared-
error (RMSE) value on held-out ratings, to recommend the
highest predicted movies to each user.
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A typical solution idea is to assume that each movie i is
described by a vector Ui,· ∈ Rr of r “characteristics” (eg.
how much action it has, how much romance it has) and that
each user j has some amount of affinity for each charac-
teristic, represented by a vector V·,j ∈ Rr. The estimated
rating that user j would give movie i is then the dot product
Ui,· · V·,j , so we can construct an estimated rating matrix
R̃ = UV . This low-rank approximation R̃ = UV to the
rating matrix R is tuned to minimize the squared errors on
the known ratings, a solution known as the “SVD” method
in the literature.

One way to solve for the SVD solution is to use alternating
least squares (ALS), whereby the the squared error is noted
to be quadratic in U and is solved for while holding V
fixed, and vice versa repeatedly (Takács & Tikk, 2012). L2
regularization is used on the component matrices U and V
to reduce overfitting (Gower, 2014). Another way to solve
for the squared error minimizer is to use gradient descent
(Ma, 2008).

Additional modifications can be made to improve the fit,
such as additive global rating biases for each movie and user.
(Bokde et al., 2015) Other common solutions make rating
matrix predictions R̃ using principal-component-analysis
(PCA) (Vozalis & Margaritis, 2007). Many top perform-
ing solutions find some way to incorporate movie release
and consumption date information into the predictions and
also make use of restricted Boltzmann machines. Other
techniques include the clustering of users via K-nearest-
neighbors, and kernel ridge regression (Paterek, 2007).

The purpose of this paper is to rethink the SVD with ALS
algorithm from a Bayesian modeling perspective and to
study an extension to SVD-ALS which naturally arises as
a result, with the goal of better achieving the data analysis
goal of improving RMSE accuracy of rating estimation, in
a similar manner to Mnih & Salakhutdinov (2007), Zhang
& Liu (2014), and Salakhutdinov & Mnih (2008).

We use the Netflix Prize Dataset, which contains about
100M ratings of 18k movies by 400k users, forming a matrix
with ∼ 1% sparsity. This dataset was part of a contest from
2006 to 2009, where the best solution from Koren (2009)
won a large monetary prize set out by Netflix. Netflix’s
own existing algorithm at the time predicted held out ratings
with an RMSE of about 0.9514 (Koren et al., 2009). Simpler
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SVD based solutions tended to predict held out ratings with
an RMSE of about 0.91, and as more information from the
dataset was included (such as datetime), this dropped to
about 0.88. This winning solution was a large conglomerate
of several systems, and achieved an RMSE of 0.8554. These
RMSE values were measured with an undisclosed dataset
split which was more difficult than a random split. Since we
must use a random split which is easier, our RMSE values
cannot be compared with those reported by other papers.

2. SVD Method
We begin by outlining the mathematics of the SVD solution.

Let there be a true rating matrix R ∈ (R ∪ {blank})n×m

and a mask M ∈ {0, 1}n×m indicating which ratings are
not blank. We seek to construct some estimator R̃ of the
rating matrix R; M masks out some of the data in R, which
must then be estimated from only the visible values.

2.1. Optimization Problem

The SVD method’s estimator is a low-rank decomposition
R̃ = UV where U ∈ Rn×r and V ∈ Rr×m. The matrices
U and V are chosen to minimize the total squared error plus
regularization,

ℓ =
∑
i,j

Mij([UV ]ij −Rij)
2 + λ(||U ||2F + ||V ||2F ). (1)

with hyperparameters rank r ∈ N and regularization
strength λ ∈ R.

2.2. Alternating Least Squares Solver

While standard stochastic gradient descent would suffice
in many large matrix completion problems, this can be too
slow for larger problems, so we choose to study the ALS
algorithm because it is often faster. The main idea of ALS
is to notice that the loss is quadratic and convex in both U
and V independently, so one can alternately solve for U via
least squares while holding V fixed, and vice versa. We
solve for U by setting the derivative of the loss to zero,

0 =
dℓ

dUi·
=

2

N
(Ui·V −Ri·)diag(Mi·)V

T + 2λUi· (2)

Ui· =(Ri· ⊙Mi·)V
T (V diag(Mi·)V

T +NλI)−1 (3)

where ⊙ denotes the elementwise product, and Ui· denotes
the ith row of U . The same, with U and V swapped and
transposed, is done to find the best V , and then the whole
process is repeated many times. The time complexity is
O(r3) due to the matrix inverse.

2.3. The Bayesian Version

We would now like to rethink this solution from the
Bayesian modeling perspective. This can be done by finding

a Bayesian model where variational inference (VI) gives
us a KL divergence that lines up with ℓ, along with a VI
algorithm to replicate the behavior of ALS. We have built up
the details of this model through trial and error until it repro-
duced the SVD-ALS solution, but we save our past failed
attempts and only present the final successfully reproducing
model.

We begin with a graphical model with latent variables U and
V and observables R. Our prior p presumes that U and V
are drawn from iid normal distributions of variance α, and
that the ratings are R = UV + ϵ for some iid normally dis-
tributed noise ϵ of variance β. The estimator R̃ we construct
is then the expected value of R under the posterior over U
and V . Let us use a mean-field posterior approximation q,
with U and V both independent and normally distributed
with means µU and µV but with fixed variance γ. Further-
more, let α, β, γ ∈ R+ be some predetermined constants
(ie. hyperparameters). The relevant KL divergence to be
minimized, in terms of µU and µV , can then be shown to be

KL(q||p) =EU,V∼q

[
log

q(U, V )

p(U, V )

]
(4)

=KL(N (µU , γ)||N (0, α))

+KL(N (µV , γ)||N (0, α))

+
1

2β

∑
i,j

MijEU,V∼q

[
([UV ]ij −Rij)

2
]

+ const (5)

=
1

2β

∑
i,j

Mij([µUµV ]ij −Rij)
2

+
1

2α

(
||µU ||2F + ||µV ||2F

)
+O(γµ2/β) + const (6)

Notice the close resemblance of this KL divergence to the
form of ℓ, with the main difference being the O(γ) term.
We can resolve this by choosing α = 1/2λ and β = 1/2,
and very small γ → 0, to finally obtain KL(q||p) = ℓ +
const. Then, minimizing the KL and constructing R̃ =
EU,V∼q[R] = µUµV is equivalent to standard SVD. We
can use Coordinate-Ascent Variational Inference (CAVI)
(Bishop & Nasrabadi, 2006) to perform the minimization;
it optimizes each of µU and µV alternately. Solving for the
minimum with respect to µU for the CAVI step, we get

µUi· =(Ri· ⊙Mi·)µ
T
V

(
µV diag(Mi·)µ

T
V +

βI

α

)−1

(7)

and correspondingly for µV . This is exactly the same as
what ALS computes to optimize U and V . This concludes
the successful reconstruction of the SVD-ALS solution from
the Bayesian viewpoint.
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3. Flexible Variances
From the Bayesian modeling perspective, it is strange and
unnatural to make the choice that the approximate posterior
q has infinitesimal variance γ. It would appear that this
modeling choice is made to eliminate the O(γµ2/β) term
in the KL loss such that its minimization simplifies a least
squares problem, thus leading to the SVD-ALS algorithm.
While this is well known to be tractable, the use of a constant
variance limiting to zero is an unnecessary sacrifice, and the
minimizer still has an easily computable solution when the
variances are unrestricted. We will show that this extension
to SVD-ALS has a positive effect on its performance. We
will refer to this flexible-variance model as “Bayesian SVD-
ALS”.

Mathematically, we replace the constant variance γ with
per-element variances vU ∈ Rn×r and vV ∈ Rr×m in the
mean-field approximate posterior q. The KL loss can now
be rederived in the same way as was done in Equations
(4)-(6), resulting in the expression:

KL(q||p) = 1

2β

∑
i,j

Mij([µUµV ]ij −Rij)
2

+
1

2α

(
||µU ||2F + ||µV ||2F

)
+
∑
ik

vUik/α− ln vUik

2

+
∑
kj

vV kj/α− ln vV kj

2

+
1

2β

∑
ijk

Mij

(
(µ2

Uik + vUik)(µ
2
V kj + vV kj)

− µ2
Uikµ

2
V kj

)
+ const. (8)

Again, we seek to minimize the KL, but now we have four
matrix parameters µU , vU , µV , vV to optimize instead of
two. Solving for µU , a correction of diag(Mi·v

T
V ) appears,

µUi· =(Ri· ⊙Mi·)µ
T
V

(
µV diag(Mi·)µ

T
V + βI/α

+ diag(Mi·v
T
V )

)−1

. (9)

When we solve for the minimum with respect to vU , we get

vUik =
(
1/α+Mi· (µV k· ⊙ µV k· + vV k·)

T
/β

)−1

(10)

The formula for the constructed rating matrix R̃ =
EU,V∼q[R] = EU,V∼q[UV ] = µUµV remains the same
since U and V are independent. Importantly, the time com-
plexity has not increased from the original ALS update.

A good sanity check is to interpret what these solutions
entail on an intuitive level. Firstly, we observe from (9) that

variance in V acts to regularize/suppress the mean of U .
This makes sense, because our best estimates of a movie’s
characteristics should be less extreme if we are uncertain
about the characteristics of the users who watch the movie.

(10) shows that the variance of U is α by default, but it
decreases with growing V . In other words, the user’s char-
acteristics begin with default uncertainty from the prior, but
become more precise for users i who have given more rat-
ings and whose ratings are more extreme and varied, which
makes sense.

4. Experiments
In this section, we compare the empirical performance of
SVD-ALS against Bayesian SVD-ALS, and try to figure out
what makes Bayesian SVD-ALS different.

We split the data randomly 99 to 1 train to validation, and
subtracted the mean rating off from all the ratings. We
then optimized the SVD-ALS model for up to 25 iterations
with early stopping at the lowest validation RMSE, and
used the Covariance Matrix Adaptation Evolutionary Strat-
egy (Hansen et al., 2003) to tune the hyperparameters to
λ = 6.047, r = 23. For Bayesian SVD-ALS, we tuned
only µU , µV for the first 16 iterations with vU , vV set uni-
formly to 10−8, and then trained for up to 16 more iterations
including vU , vV with early stopping, and tuned the hyperpa-
rameters to α = 0.108, β = 0.593, r = 77. Table 1 shows
that Bayesian SVD-ALS achieves over a 2% improvement
in RMSE over traditional SVD-ALS.

Table 1. Performance of SVD-ALS against Bayesian SVD-ALS.

Method Train RMSE Validation RMSE

SVD-ALS 0.7562 0.8303
Bayesian SVD-ALS (ours) 0.7132 0.8097

Figure 1 shows that in SVD-ALS, the magnitude of effect
of the kth movie/user characteristic on ratings entirely de-
termines how much information the posterior has gathered
about that characteristic, as all the (||µ||,KL) points fall
on a thin curve. In contrast, Bayesian SVD-ALS is able to
distinguish between the degree of effect from the amount of
information learned about that characteristic, as the curve
shows a spread. An intuitive example of how this can hap-
pen is the posterior allows the effect of the characteristic to
be known as the same value but at different levels of accu-
racy, ie. with the same mean µU ≈ 0 but any variance vU .
Interestingly, Figure 1 also shows that Bayesian SVD-ALS
models movies with more characteristics than SVD-ALS,
but with each characteristic having a weaker effect on rat-
ings. The effect of top user characteristics on ratings is also
pronounced in Bayesian SVD-ALS.
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Figure 1. Left: Amount of information collected about which
movies each characteristic k (denoted by one point), compared
to how much this characteristic determines movie ratings. The
amount of collected information is measured by the KL contribu-
tion KL(N (µU·,k , diag(vU·,k )||N (0, α)) to Equation (5), which
is affected by both mean and variance; and the degree of effect is
measured by the magnitude ||µU·,k ||. For the original SVD-ALS,
the approximate posterior variance is fixed, diag(vU·,k ) = γI,
and the minimum possible contribution KL(N (0, γI)||N (0, α))
is subtracted off. Right: The equivalent of the left plot but for
users having preferences for characteristic k.

Figure 2. Left: Scatterplot of the approximate posterior compo-
nents q(Uik) for every i and k, in the Bayesian SVD-ALS solu-
tion. Every red dot represents a normal distribution parameterized
by mean µUik and variance vUik . The black dashed curve is
µ2
Uik

+ vUik = α, where the prior and posterior both estimate Uik

to have the same squared value, Ep[U
2
ik] = Eq[U

2
ik]. The blue X

marks the prior distribution N (0, α); any approximate posterior
component here contains no information, and components farther
from the X contain more information about the user. Right: The
equivalent of the left plot but for movies Vkj instead of users Uik.

Figure 2 shows the posterior q(U, V ) through the statistics
of its individual components q(Uik) and q(Vkj) for every
i, k, j, each of which is a normal distribution. The (µ, v)
pairs for every component are shown in a scatterplot. None
of the variances rise above α, indicating that latent variable
precision only ever increases as a result of data. Further-
more, when v is lower, µ deviates more from zero. In other
words, the less we know about the amount of a certain char-
acteristic a movie has, the closer to average our best estimate
of this amount must be. Notice that the hyperparameter α
seems well tuned, since the dashed parabola has a horizontal
width roughly comparable to the scatterplot’s spread.

Figure 3 highlights that the original SVD-ALS and the
Bayesian SVD-ALS have significantly different assignments
of the KL information content of the data matrix R. Namely,
according to Bayesian SVD-ALS, most of the information
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Figure 3. The amount of information about which users like a given
characteristic k against the amount of information about which
movies have characteristic k. Information measures are in the
same way as in Figure 1.

in the dataset describes an understanding of user preferences,
as opposed to the movie characteristics which remain more
unknown, whereas to SVD-ALS, the comparitively more
information is allocated to movie characteristics and less is
about user preferences. This can be observed in the fact that
the Bayesian SVD-ALS cluster has more user-related and
less movie-related KL than the SVD-ALS cluster.

5. Discussion/Conclusion
In our analysis of SVD-ALS, we developed a Bayesian
model for movie ratings, and a procedure for predicting
estimated ratings, such that these predicted ratings can be
used to recommend new movies to users. To do this, we
reformulated standard SVD for large matrix completion as
a variational inference problem with a particular Bayesian
model, and we understood the ALS algorithm for SVD to
be equivalent to the CAVI algorithm in this context.

We then widened the space of approximate posteriors, and
rederived Bayesian SVD-ALS, the equivalent of the SVD-
ALS algorithm which incorporates this extension.

Finally, we compared the empirical performance of SVD-
ALS against Bayesian SVD-ALS, and found that Bayesian
SVD-ALS reduces the validation RMSE by more than 2%
on the Netflix Prize Dataset. We found that Bayesian SVD-
ALS describes users and movies with more characteristics
than SVD-ALS, and deduces comparatively more about
the users and less about the movies. We also found that
Bayesian SVD-ALS estimates the effect of user/movie char-
acteristics on ratings to be larger for those effects which are
more certain.

Overall, we have used the Bayesian framework to provide
insight into the construction of large matrix completion
algorithms for recommendation systems, resulting in an
improved algorithm which achieves better performance.
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