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Abstract

In this project, we study the relationship between two seemingly unrelated phe-
nomena: the clustering of nearby spins in samples from Ising models, and the
connectivity of random graphs. It turns out that both systems exhibit a phase
transition, whereby depending on the temperature and edge removal probability
respectively, either the whole system agglomerates together into one spin or con-
nected component, or the whole system fragments into locally connected pieces.
Recent progress in information theory on the topic of information percolation
provides an unexpected link between the two phenomena, allowing us to study
one phase transition indirectly through the other. We derive an information the-
oretic bound between the two transition points in the two systems. We explore
the properties of this bound through simulations of Ising models and percolation
networks.

1 Introduction

Lattice Ising models are a type of probabilistic graphical model commonly used as a toy model for
studying ferromagnetism in statistical mechanics [2]. A common and well studied kind of lattice Ising
model has a binary random variable Xij ∈ {−1, 1} for every lattice point (i, j) in a 2 dimensional
space, and has a probability distribution proportional to the exponential of a potential function Φ(X)
defined as follows:

Φ(X) =
∑
i,j

JijXij +
∑

(i1j1,i2j2)∈adjacencies

Ji1j1,i2j2Xi1j1Xi2j2 , (1)

where X is the set of all Xij , and Jij and Ji1j1,i2j2 are coefficients provided for each lattice point
and adjacency, respectively. Each random variable in X represents an atom’s spin within a crystal of
ferromagnetic material. The coefficients, whose magnitude is inversely proportional to the temperature
of crystal, can provide encouragement for spins to align with each other in large clusters to form a
total spin of larger magnitude, so that the material as a whole becomes magnetic on a macroscopic
scale. Ising models with constant Jij and Ji1j1,i2j2 are well known to exhibit two distinct phases
separated by a sharp transition temperature: a “paramagnetic” phase at high temperatures where
clusters of aligned spins are small and numerous, and a “ferromagnetic” phase at low temperatures
where the whole crystal is mostly part of one large cluster of the same spin. You can easily see this
phase transition in reality, by heating a permanent magnet with a blowtorch, and observing upon
reaching a very specific temperature universal to all magnets of that kind, it suddenly stops sticking
to metal. The exact temperature of this phase transition is core to our understanding of magnetism,
which is why condensed matter physicists are interested in finding where it is. Unfortunately though,
the phase transition temperature is typically incredibly difficult to calculate/estimate for many kinds
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of Ising models, and for decades, many a physicist have poured their blood, sweat, and tears into the
process of finding it.

A separate line of work in the field of information theory has recently produced results regarding
information percolation, which we believe can offer us help in finding the phase transition. Informa-
tion percolation is the phenomenon that mutual information between two faraway nodes in a large
graphical model, such as an Ising model, is upper bounded by their percolation probability [9].
This is the probability that the two nodes remain connected when nodes and/or edges are removed
randomly [11], which can be estimated very easily in a computer via simulation.

Why do we care about the mutual information and the percolation probability? It turns out that a
telltale sign of phase transition in an Ising model is when we change the temperature slightly, and
faraway spins in the crystal rapidly become correlated, gaining mutual information. This is because
faraway nodes will have the same spin if they are part of the same cluster, whereas with many smaller
clusters they will be separated. Thus, knowing the mutual information between faraway spins tells us
whether the temperature is above or below the critical temperature, which can be used to locate it.

As for the percolation probability, mathematicians have long known that percolation probabilities on
lattice graphs also show a sharp phase transition, from one large connected component to many small
components, dependent on the node/edge removal probability. That is, after a certain threshold value,
the probability of far-off nodes being connected drops rapidly with the probability that each edge is
removed, a phenomenon that reeks of similarity to the Ising model phase transition.

In light of these recent advances in information percolation, we ask in this paper whether the
easily computable phase transition for percolation gives us another way to determine the transition
temperatures for lattice Ising models. We estimate the percolation probability and mutual information
on either side of a percolation bound, to demonstrate that the bound can give conclusions about the
location of the Ising model phase transition. By measuring the gap of the bound for various grid
sizes, we determine that the bound is not perfectly tight, but is still tight enough to be moderately
conclusive of the transition temperature.

2 Background

This work is largely built upon the information percolation bound from Theorem 2 of [7], which we
outline in this section.

2.1 Information Percolation Bound

The main information percolation bound that makes our work possible is Theorem 2 of [7], which we
include in Equation 2. But first, we must explain how the theorem is set up:

We begin with an undirected graph G = (V,E) where each node v has a random variable Xv from a
finite alphabet Xv , sampled independently. For each edge e = {u, v}, we define a random variable Ye

whose distribution P (Ye|Xu, Xv) is conditional only on the variables Xu and Xv at the nodes which
it connects. The resulting probabilistic graphical model is then bipartite, with X = {Xv; v ∈ V } on
one side and Y = {Ye; e ∈ E} on the other. This lets us define the mutual information between two
faraway nodes when given observations on the edges, Ey∼Y [I(Xu;Xv|Y = y)], which appears on
the left side of the bound.

Now, having already defined a conditional distribution P (Ye|Xu, Xv) for every edge e, we can
write what is known as the “strong data processing inequality contraction coefficient” ηKL e of this
conditional distribution. It is a scalar quantity between 0 and 1, explained in detail in [9], and is well
known for many simple distributions P (Ye|Xu, Xv); it suffices to know that ηKL e is well known for
the conditional distributions we will be using in this paper.

Finally, we go back to the original graph G that has only X and not Y , and delete each edge e with
probability 1− ηKL e. Then, we denote by perc(u → v) the probability that there exists a path from
node u to node v in the graph G after the edge deletion process, a.k.a. the “percolation probability”,
which appears on the right side of the bound.

Finally, (a weakened version of) the information percolation bound states that
Ey∼Y [I(Xu;Xv|Y = y)] ≤ (lnmax

w
|Xw|)perc(u → v) (2)
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This says that when faraway nodes are most likely disconnected in the percolation graph, their
corresponding spins must also be mostly uncorrelated in the graphical model. The phase transition
for the left side occurs when the expected mutual information suddenly jumps from zero to nonzero
as the conditional distribution P (Ye|Xu, Xv) varies, so we know the phase transition is impossible
wherever the right side of the bound (2) is zero, which clamps the mutual information to zero. Next,
we’ll aim to write the left side as the mutual information in an Ising model, and give an algorithm to
estimate the right side. Then, we can determine the region of P (Ye|Xu, Xv) where the right side is
computed to be nonzero, and conclude that the phase transition of the Ising model must be within
that region. This will transform the bound (2) into a computational method to helps us find the phase
transition in the Ising model.

3 Method

In this section, we explain how to translate Theorem (2) into a statement about the relationship
between Ising models and percolation networks. Then, we outline our algorithms for simulating these
percolation networks, such that we can measure the quantities described by the bound.

3.1 The Left Side of the Bound comes from an Ising Model

Here, we want to show that by picking the setup of the bound (2) cleverly, we can equate its left side
with the mutual information between faraway nodes in an Ising model. We pick the setup as follows:

The graph consists of an n× n grid of random variables Xv that can take values 1 or -1 with equal
probability independently. We now add edges between neighbors, and also connect opposite sides
of the grid together, to form a total of 2n2 edges. Each edge Y(u,v) is a binary random variable,
that takes the value XuXv with probability p and −XuXv with probability 1− p. This conditional
distribution P (Ye|Xu, Xv) has a known contraction coefficient of ηKL e = (1− 2p)2.1.

Now we must show that the probability distribution P (X|Y ) is coming from this setup is actually
the same as an Ising model over variables X when Y is given and fixed:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(Bayes rule)

∝ P (Y |X) (since X is uniform and Y is fixed)

=
∏

e=(u,v)∈E

P (Ye|Xu, Xv) (product of likelihoods of all observations)

=
∏

e=(u,v)∈E

exp

(
1 + YeXuXv

2
log p+

1− YeXuXv

2
log 1− p

)
(from chosen setup)

∝ exp

 ∑
e=(u,v)∈E

log
(

p
1−p

)
2

YeXuXv

 (rearranging)

So we see that P (X|Y ) is actually an Ising model, with Jij = 0 and Ji1j1,i2j2 =
log ( p

1−p )
2 Ye. But

as we can see, the edge coefficients Ji1j1,i2j2 are picked randomly since Ye are random. The left side
of the bound then quantifies the average mutual information between faraway spins in such an Ising
model.

We can even simplify the Ising model that we are working with, using the fact that the mutual
information we are looking at is invariant to certain transformations. Specifically, when we swap all
the Ye connecting to a node v, the distribution P (X|Y ) then becomes P (X/Xv,−Xv|Y ), and the
mutual information does not change. Noting that the way we generated the Ye first involved picking
some X uniformly at random, this means swapping all the Ye connecting to a node v is equivalent
to picking v oppositely in the first place. So, it really doesn’t matter what X we used to generate

1This is called the “binary symmetric channel of flip probability p”, BSC(p), and the ηKL e value can be
found in Equation 16 of [9]
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Ye for the expectation, and we might as well pick X to be all ones, as this will not affect the mutual
information. This leads to us generating an Ising model where Ye is i.i.d. Bernoilli with probability p
of being 1 and 1− p of being −1. Therefore, we can also say that P (X|Y ) above is an Ising model

with Jij = 0 and iid edge weights Ji1j1,i2j2 =
log ( p

1−p )
2 Bernoulli(p).

It turns out that this particular kind of Ising model is known in condensed matter physics as the
Edwards-Anderson model with Bernoulli couplings, a model of a spin glass [4] [5]. More com-
monly, physicists assume Gaussian couplings, which we can recover a specific case of, by picking the
setup a bit differently. Specifically, we would choose each edge Y(u,v) to be a normally distributed
random variable with mean J0XuXv and variance 1, for some J0. The ηKL e value associated with
this choice is now equal to 2Ey∼N(J0,1)[σ(2yJ0)]− 1 where σ(x) = 1/(1 + e−x), as calculated in
Appendix A. This expectation can be efficiently computed via trapezoidal integration. The derivation
of the resulting Ising model form is similar to before:

P (X|Y ) =
∏

e=(u,v)∈E

P (Ye|Xu, Xv) (as before)

∝
∏

e=(u,v)∈E

exp

(
− (J0XuXv − Ye)

2

2

)
(from chosen setup)

∝ exp

 ∑
e=(u,v)∈E

(J0Ye)XuXv

 (rearranging)

Again, P (X|Y ) is an Ising model, with Jij = 0, but now the edge weights are distributed as

N(J2
0 , J

2
0 ) instead of

log ( p
1−p )
2 Bernoulli(p), after the same simplification trick we used before to

presume X is all ones. Thus we have recovered the Edwards-Anderson model of the spin glass, but
this time with N(J2

0 , J
2
0 ) couplings.

3.2 The Right Side of the Bound can be Computed Easily

Recall from the setup that the right side of the bound 2 is the probability that nodes u and v remain
connected after deleting each edge with some probability pdrop = 1− ηKL e = 1− (1− 2p)2. So, we
simulate that on a computer by creating grids that wrap around, and then creating graphs by dropping
each edge with probability pdrop. We then breadth-first-search to determine whether the corner node
u = (0, 0) and the middle node v = (n/2, n/2) (where the grid is of size n) are connected, and
average over many runs to estimate perc(u → v). Since we are working with binary variables, we
have lnmaxw |Xw| = ln 2, finishing off the right side of the bound.

3.3 Known Transition Temperatures from Literature

The phase transition probability of edge percolation on grids is well known to be pdrop = 1/2, and
can be solved using dual lattices [3]. This means when p > 1/2 − 1/

√
8 (which corresponds to

pdrop = 1/2), we must have perc(u → v) = 0. Due to the upper bound (2) and our Ising model
equivalence that the phase transition, this means that Ising models with edge weights

Ji1j1,i2j2 =
log(3− 2

√
2)

2
Bernoulli(1/2− 1/

√
8)

must be in the paramagnetic, decorrelated phase. Consequently, any Ising models with weaker
weights than log(3−2

√
2)

2 or weights more randomized than Bernoulli(1/2− 1/
√
8) must also be in

the paramagnetic, decorrelated phase. Therefore, the phase transition boundary for the Ising model
must be at a weight strength stronger than log(3−2

√
2)

2 for randomization as Bernoulli(1/2− 1/
√
8),

or must be less random than Bernoulli(1/2− 1/
√
8) when the weight strength is log(3−2

√
2)

2 .
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4 Preliminary Results

4.1 Baseline Method: Direct Simulation of Ising Models

In order to evaluate the efficacy of our method for bounding long range mutual information in Ising
models, we need a baseline method for measuring this mutual information. As such, we perform
simulations of Ising models to obtain the baseline.

More specifically, we use annealed importance sampling (AIS) to estimate the partition functions of
the Ising models at various temperatures, and use these partition functions as a part of a simulated
tempering routine to to sample from our Ising models at a specific temperature. We first generate a
new Ising model with randomized edge weights of magnitude log( p

1−p )/2, and with positive sign
with probability p, and sample 100 times to get the empirical mutual information I(Xu;Xv|Y )
between u = (0, 0) and v = (n/2, n/2). We do this with 10 Ising models using 10 samples for Y , to
estimate the long range mutual information.

Some samples from our Ising models, for p ∈ {0.1, 1/2− 1/
√
8, 0.2} are shown in Figure 1.
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Figure 1: Samples from Ising models with edge weights disributed as
log ( p

1−p )
2 Bernoulli(p), for

various values of p.

Treating our Ising model simulations as the ground truth, we now calculate our percolation bound, to
plot the mutual information bound for various values of p, shown in Figure 2 in red.

5 Discussion

Our experiments show that the bound we derived holds, as indicated by the fact that the red line is
above the black line by a statistically significant margin. In addition, both systems (Ising model and
percolation) show a phase transition, indicated by the vertical jump in the graphs, separating regimes
of low p and high p. We are pleased to observe that the red bound and the black measurements are
near each other, indicating the efficacy of our method for bounding the long-range mutual information
for a cheap computational cost.

For finite grid sizes, we observe in Figure (2) a soft jump in mutual information instead of a discrete
jump. Nevertheless, a sharp phase transition does seem to be developing in both systems near
p = 1/2−

√
1/8 ≈ 0.146. We are unable to further resolve the phase transition for either system,

due to computational constraints. The bound seems quite tight for smaller grid sizes, but unfortunately,
a gap in the bound develops when the grid size increases. The well-known transition threshold for the
square lattice percolation network is at pdrop = 1/2 corresponding to p = 1/2−

√
1/8 ≈ 0.146 [3],

so we expect the percolation network transition to sharpen at this location as the grid size goes to
infinity.
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Figure 2: Left: The red line denotes our upper bound on the mutual information between distant spins
in an Ising model, via measuring percolation probabilities, for various Ising model randomizations
p, with various grid sizes. The actual mutual information, in black, is measured by Ising model
simulation as in Section 4.1. One standard deviation uncertainties for Ising model simulations are
plotted, and computed by adding in quadrature the inter-Y -sample uncertainty and the uncertainty in
the mutual information estimate given by the correlation between two nodes, in each sample of Y .
The red line denotes the known theoretical percolation threshold for infinite grids. [3] The bottommost
plot is for grid size 100, where we were unable to directly measure the mutual information due to
computational constraints; nevertheless our bound, which can still easily be computed, is shown.6



6 Limitations

Our current analysis does not allow for us to vary the edge sign flip probability independently
from the temperature; our results only pertain to the phases of the randomized Ising model on a
one dimensional line in the two dimensional flip probability-temperature space. Similarly in the
Gaussian couplings case, we were unable to find a way to allow the mean and variance of Ye to
change independently; they were also tied together. This was a major barrier which prevented us
from drawing phase diagrams involving both parameters, which we would have preferred to include
if possible.

Physicists have determined the critical exponents of the Ising model and percolation networks’ phase
transitions, and shown that the two models exhibit different limiting behavior at the boundaries of
their phase transitions; ie. they belong to different universality classes. We suspect this may imply
that our percolation-based bound is not saturated and can still be improved despite its success so far,
though we are unsure of this conjecture. There may exist a graphical model out there whose behavior
has the same critical exponents as the Ising model, and for those models, it may still be possible to
saturate our bound.

7 Future Work

The framework of information percolation for Ising models which we have built, allows for a lot of
modification. Variations of this work can be made for:

• Non-isotropic lattices
• Higher dimensional lattices
• Lattice graphical models with more than two possible states for a node; ie. the n-state clock

model for finitely many states [12], the XY model for a continuous circle of states [10], and
the classical Heisenberg model for a continuous sphere of states [6]

• Models of ferromagnetism based upon fully connected graphs, such as the Sherrington-
Kirkpatrick model [1]

8 Teammates, work division

This team consists of Isaac Liao and Saumya Goyal. Isaac is primarily responsible for physical
interpretations of Ising models, as well as managing the Ising model sampling code. Saumya is
responsible for managing the percolation network simulations. Both are jointly responsible for
coming up with the derivation showing that the left side of the bound in Theorem 2 of [7] is actually
pertinent to randomized Ising models. Both are also jointly responsible for writing and generating
plots. The code is publicly available on GitHub2.
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A Calculation of Contraction Coefficient for Gaussian Couplings

In Section 3.1, we state that for the conditional probability distribution P (Y(u,v)|Xu, Xv), which
maps Xu, Xv to N(J0XuXv, 1), the contraction coefficient is ηKL e = 2Ey∼N(J0,1)[σ(2yJ0)]− 1.
Here, we provide the proof.

Firstly, [8] shows that for conditional probability distributions that have binary input, and are also
input-symmetric, the contraction coefficient is equal to:

ηKL e =Iχ2(X;Y ) for X ∼ Bernoulli(1/2)

=EX∼Bernoulli(1/2)
[
χ2(PY |X ||PY )

]
=EX,Y∼PXY

[
p(Y |X)

p(Y )

]
− 1

=− 1 +

∫
exp(−(y − J0)

2/2)√
2π

2 exp(−(y − J0)
2/2)

exp(−(y − J0)2/2) + exp(−(y + J0)2/2)
dy

=− 1 +

∫
exp(−(y − J0)

2/2)√
2π

2 exp(yJ0)

exp(yJ0) + exp(−yJ0)
dy

=− 1 +

√
2

π

∫
exp(−(y − J0)

2/2)

1 + exp(−2yJ0)
dy

=− 1 + 2
1√
2π

∫
exp(−(y − J0)

2/2)

1 + exp(−2yJ0)
dy

=2Ey∼N(J0,1)[σ(2yJ0)]− 1, σ(x) =
1

1 + e−x

This value can then be efficiently approximated using trapezoidal integration.
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